|
import argparse |
|
import datetime |
|
import logging |
|
import inspect |
|
import math |
|
import os |
|
from typing import Dict, Optional, Tuple |
|
from omegaconf import OmegaConf |
|
from collections import OrderedDict |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
|
|
import diffusers |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from animatediff.models.unet import UNet3DConditionModel |
|
from tuneavideo.data.frames_dataset import FramesDataset |
|
from animatediff.data.dataset import ImgSeqDataset |
|
from tuneavideo.data.multi_dataset import MultiTuneAVideoDataset |
|
from animatediff.pipelines.pipeline_animation import AnimationPipeline |
|
from tuneavideo.util import save_videos_grid, ddim_inversion |
|
from einops import rearrange, repeat |
|
|
|
|
|
|
|
check_min_version("0.10.0.dev0") |
|
|
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
def main( |
|
pretrained_model_path: str, |
|
output_dir: str, |
|
train_data: Dict, |
|
validation_data: Dict, |
|
validation_steps: int = 100, |
|
train_whole_module: bool = False, |
|
trainable_modules: Tuple[str] = ( |
|
"to_q", |
|
), |
|
train_batch_size: int = 1, |
|
max_train_steps: int = 500, |
|
learning_rate: float = 3e-5, |
|
scale_lr: bool = False, |
|
lr_scheduler: str = "constant", |
|
lr_warmup_steps: int = 0, |
|
adam_beta1: float = 0.9, |
|
adam_beta2: float = 0.999, |
|
adam_weight_decay: float = 1e-2, |
|
adam_epsilon: float = 1e-08, |
|
max_grad_norm: float = 1.0, |
|
gradient_accumulation_steps: int = 1, |
|
gradient_checkpointing: bool = True, |
|
checkpointing_steps: int = 500, |
|
start_global_step: int = 0, |
|
resume_from_checkpoint: Optional[str] = None, |
|
mixed_precision: Optional[str] = "fp16", |
|
use_8bit_adam: bool = False, |
|
enable_xformers_memory_efficient_attention: bool = True, |
|
seed: Optional[int] = None, |
|
|
|
motion_module: str = "models/Motion_Module/mm_sd_v15.ckpt", |
|
inference_config_path: str = "configs/inference/inference-v3.yaml", |
|
motion_module_pe_multiplier: int = 1, |
|
dataset_class: str = 'MultiTuneAVideoDataset', |
|
|
|
|
|
|
|
image_finetune: bool = False, |
|
|
|
name: str = "scenefusion", |
|
use_wandb: bool = True, |
|
launcher: str = "launcher", |
|
|
|
cfg_random_null_text: bool = True, |
|
cfg_random_null_text_ratio: float = 0.1, |
|
|
|
unet_checkpoint_path: str = "", |
|
unet_additional_kwargs: Dict = {}, |
|
ema_decay: float = 0.9999, |
|
noise_scheduler_kwargs = None, |
|
|
|
max_train_epoch: int = -1, |
|
validation_steps_tuple: Tuple = (-1,), |
|
|
|
num_workers: int = 32, |
|
checkpointing_epochs: int = 5, |
|
|
|
mixed_precision_training: bool = True, |
|
|
|
global_seed: int = 42, |
|
is_debug: bool = False, |
|
): |
|
*_, config = inspect.getargvalues(inspect.currentframe()) |
|
|
|
inference_config = OmegaConf.load(inference_config_path) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
mixed_precision=mixed_precision, |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if seed is not None: |
|
set_seed(seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
os.makedirs(f"{output_dir}/samples", exist_ok=True) |
|
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True) |
|
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler") |
|
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") |
|
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") |
|
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") |
|
unet = UNet3DConditionModel.from_pretrained_2d( |
|
pretrained_model_path, subfolder="unet", |
|
unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
motion_module_state_dict = torch.load(motion_module, map_location="cpu") |
|
|
|
|
|
if motion_module_pe_multiplier > 1: |
|
for key in motion_module_state_dict: |
|
if 'pe' in key: |
|
t = motion_module_state_dict[key] |
|
t = repeat(t, "b f d -> b (f m) d", m=motion_module_pe_multiplier) |
|
motion_module_state_dict[key] = t |
|
|
|
if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]}) |
|
missing, unexpected = unet.load_state_dict(motion_module_state_dict, strict=False) |
|
assert len(unexpected) == 0 |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
|
|
unet.requires_grad_(False) |
|
for name, module in unet.named_modules(): |
|
if "motion_modules" in name and (train_whole_module or name.endswith(tuple(trainable_modules))): |
|
for params in module.parameters(): |
|
params.requires_grad = True |
|
|
|
if enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
if scale_lr: |
|
learning_rate = ( |
|
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
print("optimizer values", learning_rate, adam_beta1, adam_beta2, adam_weight_decay, adam_epsilon) |
|
|
|
if use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" |
|
) |
|
|
|
optimizer_cls = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_cls = torch.optim.AdamW |
|
|
|
optimizer = optimizer_cls( |
|
unet.parameters(), |
|
lr=learning_rate, |
|
betas=(adam_beta1, adam_beta2), |
|
weight_decay=adam_weight_decay, |
|
eps=adam_epsilon, |
|
) |
|
|
|
|
|
train_dataset = None |
|
if dataset_class == 'MultiTuneAVideoDataset': |
|
train_dataset = ImgSeqDataset(**train_data) |
|
|
|
|
|
train_dataset.prompt_ids = [None] * len(train_dataset.prompt) |
|
for index, prompt in enumerate(train_dataset.prompt): |
|
train_dataset.prompt_ids[index] = tokenizer( |
|
prompt,max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
).input_ids[0] |
|
else: |
|
train_dataset = FramesDataset(tokenizer=tokenizer, **train_data) |
|
train_dataset.load() |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, batch_size=train_batch_size |
|
) |
|
|
|
|
|
validation_pipeline = AnimationPipeline( |
|
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, |
|
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs['DDIMScheduler'])), |
|
) |
|
validation_pipeline.enable_vae_slicing() |
|
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler') |
|
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps) |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps, |
|
num_training_steps=max_train_steps * gradient_accumulation_steps, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
print("DATA LEN:", len(train_dataloader)) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) |
|
|
|
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("text2video-fine-tune") |
|
|
|
|
|
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
if start_global_step > 0: |
|
global_step = start_global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
resume_step = global_step % num_update_steps_per_epoch |
|
|
|
|
|
if resume_from_checkpoint: |
|
if resume_from_checkpoint != "latest": |
|
path = os.path.basename(resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
first_epoch = global_step // num_update_steps_per_epoch |
|
resume_step = global_step % num_update_steps_per_epoch |
|
|
|
|
|
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
|
|
for epoch in range(first_epoch, num_train_epochs): |
|
unet.train() |
|
train_loss = 0.0 |
|
for step, batch in enumerate(train_dataloader): |
|
|
|
if resume_from_checkpoint and epoch == first_epoch and step < resume_step: |
|
if step % gradient_accumulation_steps == 0: |
|
progress_bar.update(1) |
|
continue |
|
|
|
with accelerator.accumulate(unet): |
|
|
|
pixel_values = batch["pixel_values"].to(weight_dtype) |
|
video_length = pixel_values.shape[1] |
|
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") |
|
latents = vae.encode(pixel_values).latent_dist.sample() |
|
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) |
|
latents = latents * 0.18215 |
|
|
|
|
|
noise = torch.randn_like(latents) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0] |
|
|
|
|
|
if noise_scheduler.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}") |
|
|
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
|
|
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() |
|
train_loss += avg_loss.item() / gradient_accumulation_steps |
|
|
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
accelerator.log({"train_loss": train_loss}, step=global_step) |
|
train_loss = 0.0 |
|
|
|
if global_step % checkpointing_steps == 0: |
|
if accelerator.is_main_process: |
|
save_path = os.path.join(output_dir, f"mm-{global_step}.pth") |
|
save_checkpoint(unet, save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if global_step % validation_steps == 0: |
|
if accelerator.is_main_process: |
|
samples = [] |
|
generator = torch.Generator(device=latents.device) |
|
generator.manual_seed(seed) |
|
|
|
ddim_inv_latent = None |
|
if validation_data.use_inv_latent: |
|
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt") |
|
ddim_inv_latent = ddim_inversion( |
|
validation_pipeline, ddim_inv_scheduler, video_latent=latents, |
|
num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype) |
|
torch.save(ddim_inv_latent, inv_latents_path) |
|
|
|
for idx, prompt in enumerate(set(validation_data.prompts)): |
|
sample = validation_pipeline(prompt, generator=generator, |
|
latents=ddim_inv_latent, |
|
fp16=True, |
|
**validation_data).videos |
|
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif", fps=1) |
|
samples.append(sample) |
|
samples = torch.concat(samples) |
|
save_path = f"{output_dir}/samples/sample-{global_step}.gif" |
|
save_videos_grid(samples, save_path, fps=1) |
|
logger.info(f"Saved samples to {save_path}") |
|
|
|
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
pipeline = AnimationPipeline.from_pretrained( |
|
pretrained_model_path, |
|
text_encoder=text_encoder, |
|
vae=vae, |
|
unet=unet, |
|
) |
|
|
|
mm_path = "%s/mm.pth" % output_dir |
|
save_checkpoint(unet, mm_path) |
|
|
|
accelerator.end_training() |
|
|
|
def save_checkpoint(unet, mm_path): |
|
mm_state_dict = OrderedDict() |
|
state_dict = unet.state_dict() |
|
for key in state_dict: |
|
if "motion_module" in key: |
|
mm_state_dict[key] = state_dict[key] |
|
|
|
torch.save(mm_state_dict, mm_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml") |
|
args = parser.parse_args() |
|
|
|
main(**OmegaConf.load(args.config)) |
|
|