|
|
|
|
|
import torch |
|
from torch import nn |
|
|
|
from .attention import Transformer3DModel |
|
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D |
|
from .motion_module import get_motion_module |
|
|
|
import pdb |
|
|
|
def get_down_block( |
|
down_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
temb_channels, |
|
add_downsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
downsample_padding=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
|
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
|
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownBlock3D": |
|
return DownBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
|
|
use_motion_module=use_motion_module, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
elif down_block_type == "CrossAttnDownBlock3D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") |
|
return CrossAttnDownBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
|
|
use_motion_module=use_motion_module, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
prev_output_channel, |
|
temb_channels, |
|
add_upsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
attn_num_head_channels, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
|
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpBlock3D": |
|
return UpBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
|
|
use_motion_module=use_motion_module, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
elif up_block_type == "CrossAttnUpBlock3D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") |
|
return CrossAttnUpBlock3D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attn_num_head_channels, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
|
|
use_motion_module=use_motion_module, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class UNetMidBlock3DCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
output_scale_factor=1.0, |
|
cross_attention_dim=1280, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
upcast_attention=False, |
|
|
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
|
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
|
|
resnets = [ |
|
ResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
] |
|
attentions = [] |
|
motion_modules = [] |
|
|
|
for _ in range(num_layers): |
|
if dual_cross_attention: |
|
raise NotImplementedError |
|
attentions.append( |
|
Transformer3DModel( |
|
attn_num_head_channels, |
|
in_channels // attn_num_head_channels, |
|
in_channels=in_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
) |
|
) |
|
motion_modules.append( |
|
get_motion_module( |
|
in_channels=in_channels, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) if use_motion_module else None |
|
) |
|
resnets.append( |
|
ResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
self.motion_modules = nn.ModuleList(motion_modules) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): |
|
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample |
|
hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnDownBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
|
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
|
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
motion_modules = [] |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
) |
|
if dual_cross_attention: |
|
raise NotImplementedError |
|
attentions.append( |
|
Transformer3DModel( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
) |
|
) |
|
motion_modules.append( |
|
get_motion_module( |
|
in_channels=out_channels, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) if use_motion_module else None |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
self.motion_modules = nn.ModuleList(motion_modules) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample3D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): |
|
output_states = () |
|
|
|
for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
)[0] |
|
if motion_module is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) |
|
|
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
|
|
hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class DownBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_downsample=True, |
|
downsample_padding=1, |
|
|
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
motion_modules = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock3D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
) |
|
motion_modules.append( |
|
get_motion_module( |
|
in_channels=out_channels, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) if use_motion_module else None |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.motion_modules = nn.ModuleList(motion_modules) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample3D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None): |
|
output_states = () |
|
|
|
for resnet, motion_module in zip(self.resnets, self.motion_modules): |
|
if self.training and self.gradient_checkpointing: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
if motion_module is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
|
|
hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states |
|
|
|
output_states += (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states += (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class CrossAttnUpBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
attn_num_head_channels=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
dual_cross_attention=False, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
|
|
unet_use_cross_frame_attention=None, |
|
unet_use_temporal_attention=None, |
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
|
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
motion_modules = [] |
|
|
|
self.has_cross_attention = True |
|
self.attn_num_head_channels = attn_num_head_channels |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock3D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
) |
|
if dual_cross_attention: |
|
raise NotImplementedError |
|
attentions.append( |
|
Transformer3DModel( |
|
attn_num_head_channels, |
|
out_channels // attn_num_head_channels, |
|
in_channels=out_channels, |
|
num_layers=1, |
|
cross_attention_dim=cross_attention_dim, |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
) |
|
) |
|
motion_modules.append( |
|
get_motion_module( |
|
in_channels=out_channels, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) if use_motion_module else None |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
self.motion_modules = nn.ModuleList(motion_modules) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
res_hidden_states_tuple, |
|
temb=None, |
|
encoder_hidden_states=None, |
|
upsample_size=None, |
|
attention_mask=None, |
|
): |
|
for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn, return_dict=False), |
|
hidden_states, |
|
encoder_hidden_states, |
|
)[0] |
|
if motion_module is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) |
|
|
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
|
|
hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
|
|
class UpBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
prev_output_channel: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
|
|
use_inflated_groupnorm=None, |
|
|
|
use_motion_module=None, |
|
motion_module_type=None, |
|
motion_module_kwargs=None, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
motion_modules = [] |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock3D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
|
|
use_inflated_groupnorm=use_inflated_groupnorm, |
|
) |
|
) |
|
motion_modules.append( |
|
get_motion_module( |
|
in_channels=out_channels, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) if use_motion_module else None |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.motion_modules = nn.ModuleList(motion_modules) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,): |
|
for resnet, motion_module in zip(self.resnets, self.motion_modules): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
if motion_module is not None: |
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|