|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Conversion script for the Stable Diffusion checkpoints.""" |
|
|
|
import re |
|
from io import BytesIO |
|
from typing import Optional |
|
|
|
import requests |
|
import torch |
|
from transformers import ( |
|
AutoFeatureExtractor, |
|
BertTokenizerFast, |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers.models import ( |
|
AutoencoderKL, |
|
PriorTransformer, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DDPMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UnCLIPScheduler, |
|
) |
|
from diffusers.utils.import_utils import BACKENDS_MAPPING |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "query.weight") |
|
new_item = new_item.replace("q.bias", "query.bias") |
|
|
|
new_item = new_item.replace("k.weight", "key.weight") |
|
new_item = new_item.replace("k.bias", "key.bias") |
|
|
|
new_item = new_item.replace("v.weight", "value.weight") |
|
new_item = new_item.replace("v.bias", "value.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") |
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
if "to_out.0.weight" in new_path and "decoder" in new_path: |
|
|
|
checkpoint[new_path] = old_checkpoint[path["old"]].squeeze(-1) |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "to_out.0.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
if controlnet: |
|
unet_params = original_config.model.params.control_stage_config.params |
|
else: |
|
unet_params = original_config.model.params.unet_config.params |
|
|
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) |
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None |
|
use_linear_projection = ( |
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False |
|
) |
|
if use_linear_projection: |
|
|
|
if head_dim is None: |
|
head_dim = [5, 10, 20, 20] |
|
|
|
class_embed_type = None |
|
projection_class_embeddings_input_dim = None |
|
|
|
if "num_classes" in unet_params: |
|
if unet_params.num_classes == "sequential": |
|
class_embed_type = "projection" |
|
assert "adm_in_channels" in unet_params |
|
projection_class_embeddings_input_dim = unet_params.adm_in_channels |
|
else: |
|
raise NotImplementedError(f"Unknown conditional unet num_classes config: {unet_params.num_classes}") |
|
|
|
config = { |
|
"sample_size": image_size // vae_scale_factor, |
|
"in_channels": unet_params.in_channels, |
|
"down_block_types": tuple(down_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params.num_res_blocks, |
|
"cross_attention_dim": unet_params.context_dim, |
|
"attention_head_dim": head_dim, |
|
"use_linear_projection": use_linear_projection, |
|
"class_embed_type": class_embed_type, |
|
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, |
|
} |
|
|
|
if not controlnet: |
|
config["out_channels"] = unet_params.out_channels |
|
config["up_block_types"] = tuple(up_block_types) |
|
|
|
return config |
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
_ = original_config.model.params.first_stage_config.params.embed_dim |
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params.in_channels, |
|
"out_channels": vae_params.out_ch, |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params.z_channels, |
|
"layers_per_block": vae_params.num_res_blocks, |
|
} |
|
return config |
|
|
|
|
|
def create_diffusers_schedular(original_config): |
|
schedular = DDIMScheduler( |
|
num_train_timesteps=original_config.model.params.timesteps, |
|
beta_start=original_config.model.params.linear_start, |
|
beta_end=original_config.model.params.linear_end, |
|
beta_schedule="scaled_linear", |
|
) |
|
return schedular |
|
|
|
|
|
def create_ldm_bert_config(original_config): |
|
bert_params = original_config.model.parms.cond_stage_config.params |
|
config = LDMBertConfig( |
|
d_model=bert_params.n_embed, |
|
encoder_layers=bert_params.n_layer, |
|
encoder_ffn_dim=bert_params.n_embed * 4, |
|
) |
|
return config |
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False, controlnet=False): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
if controlnet: |
|
unet_key = "control_model." |
|
else: |
|
unet_key = "model.diffusion_model." |
|
|
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
print(f"Checkpoint {path} has both EMA and non-EMA weights.") |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
if config["class_embed_type"] is None: |
|
|
|
... |
|
elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection": |
|
new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"] |
|
new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"] |
|
new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"] |
|
new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"] |
|
else: |
|
raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}") |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
if not controlnet: |
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} |
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
if controlnet: |
|
|
|
|
|
orig_index = 0 |
|
|
|
new_checkpoint["controlnet_cond_embedding.conv_in.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
|
|
orig_index += 2 |
|
|
|
diffusers_index = 0 |
|
|
|
while diffusers_index < 6: |
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint[f"controlnet_cond_embedding.blocks.{diffusers_index}.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
diffusers_index += 1 |
|
orig_index += 2 |
|
|
|
new_checkpoint["controlnet_cond_embedding.conv_out.weight"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.weight" |
|
) |
|
new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( |
|
f"input_hint_block.{orig_index}.bias" |
|
) |
|
|
|
|
|
for i in range(num_input_blocks): |
|
new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop(f"zero_convs.{i}.0.weight") |
|
new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop(f"zero_convs.{i}.0.bias") |
|
|
|
|
|
new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop("middle_block_out.0.weight") |
|
new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop("middle_block_out.0.bias") |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
oldKey = {"old": "key", "new": "to_k"} |
|
oldQuery = {"old": "query", "new": "to_q"} |
|
oldValue = {"old": "value", "new": "to_v"} |
|
oldOut = {"old": "proj_attn", "new": "to_out.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path, oldKey, oldQuery, oldValue, oldOut], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
oldKey = {"old": "key", "new": "to_k"} |
|
oldQuery = {"old": "query", "new": "to_q"} |
|
oldValue = {"old": "value", "new": "to_v"} |
|
oldOut = {"old": "proj_attn", "new": "to_out.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path, oldKey, oldQuery, oldValue, oldOut], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_bert_checkpoint(checkpoint, config): |
|
def _copy_attn_layer(hf_attn_layer, pt_attn_layer): |
|
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight |
|
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight |
|
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight |
|
|
|
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight |
|
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias |
|
|
|
def _copy_linear(hf_linear, pt_linear): |
|
hf_linear.weight = pt_linear.weight |
|
hf_linear.bias = pt_linear.bias |
|
|
|
def _copy_layer(hf_layer, pt_layer): |
|
|
|
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) |
|
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) |
|
|
|
|
|
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) |
|
|
|
|
|
pt_mlp = pt_layer[1][1] |
|
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) |
|
_copy_linear(hf_layer.fc2, pt_mlp.net[2]) |
|
|
|
def _copy_layers(hf_layers, pt_layers): |
|
for i, hf_layer in enumerate(hf_layers): |
|
if i != 0: |
|
i += i |
|
pt_layer = pt_layers[i : i + 2] |
|
_copy_layer(hf_layer, pt_layer) |
|
|
|
hf_model = LDMBertModel(config).eval() |
|
|
|
|
|
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight |
|
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight |
|
|
|
|
|
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) |
|
|
|
|
|
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) |
|
|
|
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) |
|
|
|
return hf_model |
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint): |
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
for key in keys: |
|
if key.startswith("cond_stage_model.transformer"): |
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] |
|
|
|
text_model.load_state_dict(text_model_dict) |
|
|
|
return text_model |
|
|
|
|
|
textenc_conversion_lst = [ |
|
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"), |
|
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"), |
|
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"), |
|
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"), |
|
] |
|
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} |
|
|
|
textenc_transformer_conversion_lst = [ |
|
|
|
("resblocks.", "text_model.encoder.layers."), |
|
("ln_1", "layer_norm1"), |
|
("ln_2", "layer_norm2"), |
|
(".c_fc.", ".fc1."), |
|
(".c_proj.", ".fc2."), |
|
(".attn", ".self_attn"), |
|
("ln_final.", "transformer.text_model.final_layer_norm."), |
|
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), |
|
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), |
|
] |
|
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} |
|
textenc_pattern = re.compile("|".join(protected.keys())) |
|
|
|
|
|
def convert_paint_by_example_checkpoint(checkpoint): |
|
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14") |
|
model = PaintByExampleImageEncoder(config) |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
for key in keys: |
|
if key.startswith("cond_stage_model.transformer"): |
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] |
|
|
|
|
|
model.model.load_state_dict(text_model_dict) |
|
|
|
|
|
keys_mapper = { |
|
k[len("cond_stage_model.mapper.res") :]: v |
|
for k, v in checkpoint.items() |
|
if k.startswith("cond_stage_model.mapper") |
|
} |
|
|
|
MAPPING = { |
|
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"], |
|
"attn.c_proj": ["attn1.to_out.0"], |
|
"ln_1": ["norm1"], |
|
"ln_2": ["norm3"], |
|
"mlp.c_fc": ["ff.net.0.proj"], |
|
"mlp.c_proj": ["ff.net.2"], |
|
} |
|
|
|
mapped_weights = {} |
|
for key, value in keys_mapper.items(): |
|
prefix = key[: len("blocks.i")] |
|
suffix = key.split(prefix)[-1].split(".")[-1] |
|
name = key.split(prefix)[-1].split(suffix)[0][1:-1] |
|
mapped_names = MAPPING[name] |
|
|
|
num_splits = len(mapped_names) |
|
for i, mapped_name in enumerate(mapped_names): |
|
new_name = ".".join([prefix, mapped_name, suffix]) |
|
shape = value.shape[0] // num_splits |
|
mapped_weights[new_name] = value[i * shape : (i + 1) * shape] |
|
|
|
model.mapper.load_state_dict(mapped_weights) |
|
|
|
|
|
model.final_layer_norm.load_state_dict( |
|
{ |
|
"bias": checkpoint["cond_stage_model.final_ln.bias"], |
|
"weight": checkpoint["cond_stage_model.final_ln.weight"], |
|
} |
|
) |
|
|
|
|
|
model.proj_out.load_state_dict( |
|
{ |
|
"bias": checkpoint["proj_out.bias"], |
|
"weight": checkpoint["proj_out.weight"], |
|
} |
|
) |
|
|
|
|
|
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"]) |
|
return model |
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint): |
|
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder") |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
if "cond_stage_model.model.text_projection" in checkpoint: |
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) |
|
else: |
|
d_model = 1024 |
|
|
|
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") |
|
|
|
for key in keys: |
|
if "resblocks.23" in key: |
|
continue |
|
if key in textenc_conversion_map: |
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key] |
|
if key.startswith("cond_stage_model.model.transformer."): |
|
new_key = key[len("cond_stage_model.model.transformer.") :] |
|
if new_key.endswith(".in_proj_weight"): |
|
new_key = new_key[: -len(".in_proj_weight")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] |
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] |
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] |
|
elif new_key.endswith(".in_proj_bias"): |
|
new_key = new_key[: -len(".in_proj_bias")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] |
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] |
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] |
|
else: |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
|
|
text_model_dict[new_key] = checkpoint[key] |
|
|
|
text_model.load_state_dict(text_model_dict) |
|
|
|
return text_model |
|
|
|
|
|
def stable_unclip_image_encoder(original_config): |
|
""" |
|
Returns the image processor and clip image encoder for the img2img unclip pipeline. |
|
|
|
We currently know of two types of stable unclip models which separately use the clip and the openclip image |
|
encoders. |
|
""" |
|
|
|
image_embedder_config = original_config.model.params.embedder_config |
|
|
|
sd_clip_image_embedder_class = image_embedder_config.target |
|
sd_clip_image_embedder_class = sd_clip_image_embedder_class.split(".")[-1] |
|
|
|
if sd_clip_image_embedder_class == "ClipImageEmbedder": |
|
clip_model_name = image_embedder_config.params.model |
|
|
|
if clip_model_name == "ViT-L/14": |
|
feature_extractor = CLIPImageProcessor() |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") |
|
else: |
|
raise NotImplementedError(f"Unknown CLIP checkpoint name in stable diffusion checkpoint {clip_model_name}") |
|
|
|
elif sd_clip_image_embedder_class == "FrozenOpenCLIPImageEmbedder": |
|
feature_extractor = CLIPImageProcessor() |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K") |
|
else: |
|
raise NotImplementedError( |
|
f"Unknown CLIP image embedder class in stable diffusion checkpoint {sd_clip_image_embedder_class}" |
|
) |
|
|
|
return feature_extractor, image_encoder |
|
|
|
|
|
def stable_unclip_image_noising_components( |
|
original_config, clip_stats_path: Optional[str] = None, device: Optional[str] = None |
|
): |
|
""" |
|
Returns the noising components for the img2img and txt2img unclip pipelines. |
|
|
|
Converts the stability noise augmentor into |
|
1. a `StableUnCLIPImageNormalizer` for holding the CLIP stats |
|
2. a `DDPMScheduler` for holding the noise schedule |
|
|
|
If the noise augmentor config specifies a clip stats path, the `clip_stats_path` must be provided. |
|
""" |
|
noise_aug_config = original_config.model.params.noise_aug_config |
|
noise_aug_class = noise_aug_config.target |
|
noise_aug_class = noise_aug_class.split(".")[-1] |
|
|
|
if noise_aug_class == "CLIPEmbeddingNoiseAugmentation": |
|
noise_aug_config = noise_aug_config.params |
|
embedding_dim = noise_aug_config.timestep_dim |
|
max_noise_level = noise_aug_config.noise_schedule_config.timesteps |
|
beta_schedule = noise_aug_config.noise_schedule_config.beta_schedule |
|
|
|
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedding_dim) |
|
image_noising_scheduler = DDPMScheduler(num_train_timesteps=max_noise_level, beta_schedule=beta_schedule) |
|
|
|
if "clip_stats_path" in noise_aug_config: |
|
if clip_stats_path is None: |
|
raise ValueError("This stable unclip config requires a `clip_stats_path`") |
|
|
|
clip_mean, clip_std = torch.load(clip_stats_path, map_location=device) |
|
clip_mean = clip_mean[None, :] |
|
clip_std = clip_std[None, :] |
|
|
|
clip_stats_state_dict = { |
|
"mean": clip_mean, |
|
"std": clip_std, |
|
} |
|
|
|
image_normalizer.load_state_dict(clip_stats_state_dict) |
|
else: |
|
raise NotImplementedError(f"Unknown noise augmentor class: {noise_aug_class}") |
|
|
|
return image_normalizer, image_noising_scheduler |
|
|
|
|
|
def convert_controlnet_checkpoint( |
|
checkpoint, original_config, checkpoint_path, image_size, upcast_attention, extract_ema |
|
): |
|
ctrlnet_config = create_unet_diffusers_config(original_config, image_size=image_size, controlnet=True) |
|
ctrlnet_config["upcast_attention"] = upcast_attention |
|
|
|
ctrlnet_config.pop("sample_size") |
|
|
|
controlnet_model = ControlNetModel(**ctrlnet_config) |
|
|
|
converted_ctrl_checkpoint = convert_ldm_unet_checkpoint( |
|
checkpoint, ctrlnet_config, path=checkpoint_path, extract_ema=extract_ema, controlnet=True |
|
) |
|
|
|
controlnet_model.load_state_dict(converted_ctrl_checkpoint) |
|
|
|
return controlnet_model |
|
|