bluestarburst commited on
Commit
f45086c
1 Parent(s): 0f38a31

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. handler.py +16 -8
handler.py CHANGED
@@ -5,6 +5,7 @@ from transformers import CLIPTextModel, CLIPTokenizer
5
  from omegaconf import OmegaConf
6
  from huggingface_hub import hf_hub_download
7
 
 
8
 
9
  from diffusers.utils.import_utils import is_xformers_available
10
  from typing import Any
@@ -20,8 +21,8 @@ from animatediff.utils.util import load_weights
20
  class EndpointHandler():
21
  def __init__(self, model_path: str = "bluestarburst/AnimateDiff-SceneFusion"):
22
 
23
- inference_config_path = "configs/inference-v3.yaml"
24
- hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="configs/inference/inference-v3.yaml", output_dir="configs")
25
 
26
  inference_config = OmegaConf.load(inference_config_path)
27
 
@@ -30,21 +31,28 @@ class EndpointHandler():
30
  ### >>> create validation pipeline >>> ###
31
  tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="models/StableDiffusion/tokenizer")
32
  text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="models/StableDiffusion/text_encoder")
33
- vae = AutoencoderKL.from_pretrained(model_path, subfolder="models/StableDiffusion/vae")
34
- unet = UNet3DConditionModel.from_pretrained_2d(model_path, subfolder="models/StableDiffusion/unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
 
 
 
 
 
 
 
35
 
36
  if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
37
  else: assert False
38
 
39
  self.pipeline = AnimationPipeline(
40
  vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
41
- scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config['noise_scheduler_kwargs']['DDIMScheduler']'])),
42
  ).to("cuda")
43
 
44
  # huggingface download motion module from bluestarburst/AnimateDiff-SceneFusion/models/Motion_Module/mm_sd_v15.ckpt
45
 
46
- motion_module = "models/Motion_Module/mm_sd_v15.ckpt"
47
- hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/Motion_Module/mm_sd_v15.ckpt", output_dir="models/Motion_Module")
48
 
49
 
50
  self.pipeline = load_weights(
@@ -97,4 +105,4 @@ class EndpointHandler():
97
  # This function will be called during inference time.
98
 
99
 
100
- # new_handler = EndpointHandler()
 
5
  from omegaconf import OmegaConf
6
  from huggingface_hub import hf_hub_download
7
 
8
+ import os
9
 
10
  from diffusers.utils.import_utils import is_xformers_available
11
  from typing import Any
 
21
  class EndpointHandler():
22
  def __init__(self, model_path: str = "bluestarburst/AnimateDiff-SceneFusion"):
23
 
24
+ inference_config_path = "configs/inference/inference-v3.yaml"
25
+ hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="configs/inference/inference-v3.yaml")
26
 
27
  inference_config = OmegaConf.load(inference_config_path)
28
 
 
31
  ### >>> create validation pipeline >>> ###
32
  tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="models/StableDiffusion/tokenizer")
33
  text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="models/StableDiffusion/text_encoder")
34
+ vae = AutoencoderKL.from_pretrained(model_path, subfolder="models/StableDiffusion/vae")
35
+
36
+ if not os.path.isfile("models/StableDiffusion/unet/diffusion_pytorch_model.bin"):
37
+ hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/config.json")
38
+ hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/diffusion_pytorch_model.bin")
39
+
40
+ unet_model_path = "models/StableDiffusion/unet"
41
+
42
+ unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path=unet_model_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
43
 
44
  if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
45
  else: assert False
46
 
47
  self.pipeline = AnimationPipeline(
48
  vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
49
+ scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs.DDIMScheduler))
50
  ).to("cuda")
51
 
52
  # huggingface download motion module from bluestarburst/AnimateDiff-SceneFusion/models/Motion_Module/mm_sd_v15.ckpt
53
 
54
+ motion_module = "models/MotionModule/mm_sd_v15.ckpt"
55
+ hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/Motion_Module/mm_sd_v15.ckpt")
56
 
57
 
58
  self.pipeline = load_weights(
 
105
  # This function will be called during inference time.
106
 
107
 
108
+ new_handler = EndpointHandler()