Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- te
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- IndicSUPERB_train_validation_splits
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Telugu - Naga Budigam
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: IndicSUPERB train and validation splits
|
20 |
+
type: IndicSUPERB train and validation splits
|
21 |
+
config: None
|
22 |
+
split: None
|
23 |
+
args: 'config: te, split: test'
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 38.14924740301039
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Small Telugu - Naga Budigam
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Chai_Bisket_Stories_16-08-2021_14-17 dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.2875
|
38 |
+
- Wer: 38.1492
|
39 |
+
|
40 |
+
## Model description
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Intended uses & limitations
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training and evaluation data
|
49 |
+
|
50 |
+
More information needed
|
51 |
+
|
52 |
+
## Training procedure
|
53 |
+
|
54 |
+
### Training hyperparameters
|
55 |
+
|
56 |
+
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 1e-05
|
58 |
+
- train_batch_size: 8
|
59 |
+
- eval_batch_size: 8
|
60 |
+
- seed: 42
|
61 |
+
- gradient_accumulation_steps: 2
|
62 |
+
- total_train_batch_size: 16
|
63 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
+
- lr_scheduler_type: linear
|
65 |
+
- lr_scheduler_warmup_steps: 500
|
66 |
+
- training_steps: 15000
|
67 |
+
- mixed_precision_training: Native AMP
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
72 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
|
73 |
+
| 0.2064 | 0.66 | 500 | 0.2053 | 60.1707 |
|
74 |
+
| 0.1399 | 1.33 | 1000 | 0.1535 | 49.3269 |
|
75 |
+
| 0.1093 | 1.99 | 1500 | 0.1365 | 44.5516 |
|
76 |
+
| 0.0771 | 2.66 | 2000 | 0.1316 | 42.1136 |
|
77 |
+
| 0.0508 | 3.32 | 2500 | 0.1395 | 41.1384 |
|
78 |
+
| 0.0498 | 3.99 | 3000 | 0.1386 | 40.5395 |
|
79 |
+
| 0.0302 | 4.65 | 3500 | 0.1529 | 40.9529 |
|
80 |
+
| 0.0157 | 5.32 | 4000 | 0.1719 | 40.6667 |
|
81 |
+
| 0.0183 | 5.98 | 4500 | 0.1723 | 40.3646 |
|
82 |
+
| 0.0083 | 6.65 | 5000 | 0.1911 | 40.4335 |
|
83 |
+
| 0.0061 | 7.31 | 5500 | 0.2109 | 40.4176 |
|
84 |
+
| 0.0055 | 7.98 | 6000 | 0.2075 | 39.7021 |
|
85 |
+
| 0.0039 | 8.64 | 6500 | 0.2186 | 40.2639 |
|
86 |
+
| 0.0026 | 9.31 | 7000 | 0.2254 | 39.1032 |
|
87 |
+
| 0.0035 | 9.97 | 7500 | 0.2289 | 39.2834 |
|
88 |
+
| 0.0016 | 10.64 | 8000 | 0.2332 | 39.1456 |
|
89 |
+
| 0.0016 | 11.3 | 8500 | 0.2395 | 39.4371 |
|
90 |
+
| 0.0016 | 11.97 | 9000 | 0.2447 | 39.2410 |
|
91 |
+
| 0.0009 | 12.63 | 9500 | 0.2548 | 38.7799 |
|
92 |
+
| 0.0008 | 13.3 | 10000 | 0.2551 | 38.7481 |
|
93 |
+
| 0.0008 | 13.96 | 10500 | 0.2621 | 38.8276 |
|
94 |
+
| 0.0007 | 14.63 | 11000 | 0.2633 | 38.6686 |
|
95 |
+
| 0.0003 | 15.29 | 11500 | 0.2711 | 38.4566 |
|
96 |
+
| 0.0005 | 15.96 | 12000 | 0.2772 | 38.7852 |
|
97 |
+
| 0.0001 | 16.62 | 12500 | 0.2771 | 38.2658 |
|
98 |
+
| 0.0001 | 17.29 | 13000 | 0.2808 | 38.2393 |
|
99 |
+
| 0.0001 | 17.95 | 13500 | 0.2815 | 38.1810 |
|
100 |
+
| 0.0 | 18.62 | 14000 | 0.2854 | 38.2022 |
|
101 |
+
| 0.0 | 19.28 | 14500 | 0.2872 | 38.1333 |
|
102 |
+
| 0.0 | 19.95 | 15000 | 0.2875 | 38.1492 |
|
103 |
+
|
104 |
+
|
105 |
+
### Framework versions
|
106 |
+
|
107 |
+
- Transformers 4.26.0.dev0
|
108 |
+
- Pytorch 1.13.0
|
109 |
+
- Datasets 2.7.1
|
110 |
+
- Tokenizers 0.13.2
|