--- language: - te license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - IndicSUPERB_train_validation_splits metrics: - wer model-index: - name: Whisper Small Telugu - Naga Budigam results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IndicSUPERB train and validation splits type: IndicSUPERB train and validation splits config: None split: None args: 'config: te, split: test' metrics: - name: Wer type: wer value: 38.14924740301039 --- # Whisper Small Telugu - Naga Budigam This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Chai_Bisket_Stories_16-08-2021_14-17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2875 - Wer: 38.1492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.2064 | 0.66 | 500 | 0.2053 | 60.1707 | | 0.1399 | 1.33 | 1000 | 0.1535 | 49.3269 | | 0.1093 | 1.99 | 1500 | 0.1365 | 44.5516 | | 0.0771 | 2.66 | 2000 | 0.1316 | 42.1136 | | 0.0508 | 3.32 | 2500 | 0.1395 | 41.1384 | | 0.0498 | 3.99 | 3000 | 0.1386 | 40.5395 | | 0.0302 | 4.65 | 3500 | 0.1529 | 40.9529 | | 0.0157 | 5.32 | 4000 | 0.1719 | 40.6667 | | 0.0183 | 5.98 | 4500 | 0.1723 | 40.3646 | | 0.0083 | 6.65 | 5000 | 0.1911 | 40.4335 | | 0.0061 | 7.31 | 5500 | 0.2109 | 40.4176 | | 0.0055 | 7.98 | 6000 | 0.2075 | 39.7021 | | 0.0039 | 8.64 | 6500 | 0.2186 | 40.2639 | | 0.0026 | 9.31 | 7000 | 0.2254 | 39.1032 | | 0.0035 | 9.97 | 7500 | 0.2289 | 39.2834 | | 0.0016 | 10.64 | 8000 | 0.2332 | 39.1456 | | 0.0016 | 11.3 | 8500 | 0.2395 | 39.4371 | | 0.0016 | 11.97 | 9000 | 0.2447 | 39.2410 | | 0.0009 | 12.63 | 9500 | 0.2548 | 38.7799 | | 0.0008 | 13.3 | 10000 | 0.2551 | 38.7481 | | 0.0008 | 13.96 | 10500 | 0.2621 | 38.8276 | | 0.0007 | 14.63 | 11000 | 0.2633 | 38.6686 | | 0.0003 | 15.29 | 11500 | 0.2711 | 38.4566 | | 0.0005 | 15.96 | 12000 | 0.2772 | 38.7852 | | 0.0001 | 16.62 | 12500 | 0.2771 | 38.2658 | | 0.0001 | 17.29 | 13000 | 0.2808 | 38.2393 | | 0.0001 | 17.95 | 13500 | 0.2815 | 38.1810 | | 0.0 | 18.62 | 14000 | 0.2854 | 38.2022 | | 0.0 | 19.28 | 14500 | 0.2872 | 38.1333 | | 0.0 | 19.95 | 15000 | 0.2875 | 38.1492 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2