Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,124 @@ metrics:
|
|
9 |
- recall
|
10 |
base_model:
|
11 |
- microsoft/mdeberta-v3-base
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- recall
|
10 |
base_model:
|
11 |
- microsoft/mdeberta-v3-base
|
12 |
+
---
|
13 |
+
# Model Card for ai4privacy-mdeberta-v3-base-general-preprocessed
|
14 |
+
|
15 |
+
This is a model aiming to detect the PII (Personal Identifiable Information), training by "The Last Ones" team on [NeuralWave](https://neuralwave.ch/#/) Hackthon.
|
16 |
+
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
This model was fine-tuned from microsoft/mdeberta-v3-base on ai4privacy/pii-masking-400k dataset.
|
21 |
+
|
22 |
+
We use the following arguments for training variable for finetuning:
|
23 |
+
- learning_rate=3e-5,
|
24 |
+
- per_device_train_batch_size=58,
|
25 |
+
- per_device_eval_batch_size=58,
|
26 |
+
- num_train_epochs=3,
|
27 |
+
- weight_decay=0.01,
|
28 |
+
- bf16=True,
|
29 |
+
- seed=42
|
30 |
+
|
31 |
+
and other default hyperparameters of TrainingArguments.
|
32 |
+
|
33 |
+
## Training Data
|
34 |
+
|
35 |
+
[ai4privacy/pii-masking-400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k)
|
36 |
+
|
37 |
+
## Preprocessing
|
38 |
+
|
39 |
+
```python
|
40 |
+
def generate_sequence_labels(text, privacy_mask):
|
41 |
+
# sort privacy mask by start position
|
42 |
+
privacy_mask = sorted(privacy_mask, key=lambda x: x['start'], reverse=True)
|
43 |
+
|
44 |
+
# replace sensitive pieces of text with labels
|
45 |
+
for item in privacy_mask:
|
46 |
+
label = item['label']
|
47 |
+
start = item['start']
|
48 |
+
end = item['end']
|
49 |
+
value = item['value']
|
50 |
+
# count the number of words in the value
|
51 |
+
word_count = len(value.split())
|
52 |
+
|
53 |
+
# replace the sensitive information with the appropriate number of [label] placeholders
|
54 |
+
replacement = " ".join([f"{label}" for _ in range(word_count)])
|
55 |
+
text = text[:start] + replacement + text[end:]
|
56 |
+
|
57 |
+
words = text.split()
|
58 |
+
# assign labels to each word
|
59 |
+
labels = []
|
60 |
+
for word in words:
|
61 |
+
match = re.search(r"(\w+)", word) # match any word character
|
62 |
+
if match:
|
63 |
+
label = match.group(1)
|
64 |
+
if label in label_set:
|
65 |
+
labels.append(label)
|
66 |
+
else:
|
67 |
+
# any other word is labeled as "O"
|
68 |
+
labels.append("O")
|
69 |
+
else:
|
70 |
+
labels.append("O")
|
71 |
+
return labels
|
72 |
+
```
|
73 |
+
|
74 |
+
```python
|
75 |
+
k = 0
|
76 |
+
def tokenize_and_align_labels(examples):
|
77 |
+
words = [t.split() for t in examples["source_text"]]
|
78 |
+
tokenized_inputs = tokenizer(words, truncation=True, is_split_into_words=True, max_length=512)
|
79 |
+
source_labels = [
|
80 |
+
generate_sequence_labels(text, mask)
|
81 |
+
for text, mask in zip(examples["source_text"], examples["privacy_mask"])
|
82 |
+
]
|
83 |
+
|
84 |
+
labels = []
|
85 |
+
valid_idx = []
|
86 |
+
for i, label in enumerate(source_labels):
|
87 |
+
word_ids = tokenized_inputs.word_ids(batch_index=i) # map tokens to their respective word.
|
88 |
+
previous_label = None
|
89 |
+
label_ids = [-100]
|
90 |
+
try:
|
91 |
+
for word_idx in word_ids:
|
92 |
+
if word_idx is None:
|
93 |
+
continue
|
94 |
+
elif label[word_idx] == "O":
|
95 |
+
label_ids.append(label2id["O"])
|
96 |
+
continue
|
97 |
+
elif previous_label == label[word_idx]:
|
98 |
+
label_ids.append(label2id[f"I-{label[word_idx]}"])
|
99 |
+
else:
|
100 |
+
label_ids.append(label2id[f"B-{label[word_idx]}"])
|
101 |
+
previous_label = label[word_idx]
|
102 |
+
label_ids = label_ids[:511] + [-100]
|
103 |
+
labels.append(label_ids)
|
104 |
+
# print(word_ids)
|
105 |
+
# print(label_ids)
|
106 |
+
except:
|
107 |
+
global k
|
108 |
+
k += 1
|
109 |
+
# print(f"{word_idx = }")
|
110 |
+
# print(f"{len(label) = }")
|
111 |
+
labels.append([-100] * len(tokenized_inputs["input_ids"][i]))
|
112 |
+
|
113 |
+
tokenized_inputs["labels"] = labels
|
114 |
+
return tokenized_inputs
|
115 |
+
```
|
116 |
+
We use this two function to generate the source-text-level labels and then use it to align the tokens and token-level labels so that you
|
117 |
+
can use any kinds of models and tokenizers to train on [ai4privacy/pii-masking-400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k).
|
118 |
+
|
119 |
+
|
120 |
+
## Evaluation
|
121 |
+
|
122 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/671e31b377035878c5f4082a/kzlMRqXBz80y63CmqDWDx.png)
|
123 |
+
|
124 |
+
Some evaluation of this model on validation set (model 2) is shown in the table.
|
125 |
+
|
126 |
+
|
127 |
+
## Disclaimer Cooment of Non-Affiliation
|
128 |
+
|
129 |
+
The publisher of this repository is not affiliate with Ai4Privacy and Ai Suisse SA.
|
130 |
+
|
131 |
+
|
132 |
+
@NerualWave 2024 - *The Last Ones* Team.
|