bobox commited on
Commit
55585e7
·
verified ·
1 Parent(s): 86accef

Training in progress, step 214, checkpoint

Browse files
checkpoint-214/README.md CHANGED
@@ -164,34 +164,34 @@ model-index:
164
  type: sts-test
165
  metrics:
166
  - type: pearson_cosine
167
- value: 0.8193410747427454
168
  name: Pearson Cosine
169
  - type: spearman_cosine
170
- value: 0.8680272706642878
171
  name: Spearman Cosine
172
  - type: pearson_manhattan
173
- value: 0.8440476980962159
174
  name: Pearson Manhattan
175
  - type: spearman_manhattan
176
- value: 0.8510265117511795
177
  name: Spearman Manhattan
178
  - type: pearson_euclidean
179
- value: 0.8464528142983967
180
  name: Pearson Euclidean
181
  - type: spearman_euclidean
182
- value: 0.8542457068859202
183
  name: Spearman Euclidean
184
  - type: pearson_dot
185
- value: 0.8275444476338831
186
  name: Pearson Dot
187
  - type: spearman_dot
188
- value: 0.8555529342729671
189
  name: Spearman Dot
190
  - type: pearson_max
191
- value: 0.8464528142983967
192
  name: Pearson Max
193
  - type: spearman_max
194
- value: 0.8680272706642878
195
  name: Spearman Max
196
  - task:
197
  type: triplet
@@ -223,79 +223,79 @@ model-index:
223
  type: VitaminC
224
  metrics:
225
  - type: cosine_accuracy
226
- value: 0.578125
227
  name: Cosine Accuracy
228
  - type: cosine_accuracy_threshold
229
- value: 0.7840081453323364
230
  name: Cosine Accuracy Threshold
231
  - type: cosine_f1
232
- value: 0.6577540106951871
233
  name: Cosine F1
234
  - type: cosine_f1_threshold
235
- value: 0.39448243379592896
236
  name: Cosine F1 Threshold
237
  - type: cosine_precision
238
- value: 0.4900398406374502
239
  name: Cosine Precision
240
  - type: cosine_recall
241
  value: 1.0
242
  name: Cosine Recall
243
  - type: cosine_ap
244
- value: 0.5400770399437144
245
  name: Cosine Ap
246
  - type: dot_accuracy
247
- value: 0.5625
248
  name: Dot Accuracy
249
  - type: dot_accuracy_threshold
250
- value: 323.20281982421875
251
  name: Dot Accuracy Threshold
252
  - type: dot_f1
253
- value: 0.6575342465753424
254
  name: Dot F1
255
  - type: dot_f1_threshold
256
- value: 198.04354858398438
257
  name: Dot F1 Threshold
258
  - type: dot_precision
259
- value: 0.49586776859504134
260
  name: Dot Precision
261
  - type: dot_recall
262
- value: 0.975609756097561
263
  name: Dot Recall
264
  - type: dot_ap
265
- value: 0.5420016101916201
266
  name: Dot Ap
267
  - type: manhattan_accuracy
268
- value: 0.5703125
269
  name: Manhattan Accuracy
270
  - type: manhattan_accuracy_threshold
271
- value: 275.1253356933594
272
  name: Manhattan Accuracy Threshold
273
  - type: manhattan_f1
274
- value: 0.6576819407008085
275
  name: Manhattan F1
276
  - type: manhattan_f1_threshold
277
- value: 457.04986572265625
278
  name: Manhattan F1 Threshold
279
  - type: manhattan_precision
280
- value: 0.49193548387096775
281
  name: Manhattan Precision
282
  - type: manhattan_recall
283
- value: 0.991869918699187
284
  name: Manhattan Recall
285
  - type: manhattan_ap
286
- value: 0.5341380380767263
287
  name: Manhattan Ap
288
  - type: euclidean_accuracy
289
- value: 0.5859375
290
  name: Euclidean Accuracy
291
  - type: euclidean_accuracy_threshold
292
- value: 13.84214973449707
293
  name: Euclidean Accuracy Threshold
294
  - type: euclidean_f1
295
  value: 0.6577540106951871
296
  name: Euclidean F1
297
  - type: euclidean_f1_threshold
298
- value: 22.595678329467773
299
  name: Euclidean F1 Threshold
300
  - type: euclidean_precision
301
  value: 0.4900398406374502
@@ -304,28 +304,28 @@ model-index:
304
  value: 1.0
305
  name: Euclidean Recall
306
  - type: euclidean_ap
307
- value: 0.5392157650683609
308
  name: Euclidean Ap
309
  - type: max_accuracy
310
- value: 0.5859375
311
  name: Max Accuracy
312
  - type: max_accuracy_threshold
313
- value: 323.20281982421875
314
  name: Max Accuracy Threshold
315
  - type: max_f1
316
  value: 0.6577540106951871
317
  name: Max F1
318
  - type: max_f1_threshold
319
- value: 457.04986572265625
320
  name: Max F1 Threshold
321
  - type: max_precision
322
- value: 0.49586776859504134
323
  name: Max Precision
324
  - type: max_recall
325
  value: 1.0
326
  name: Max Recall
327
  - type: max_ap
328
- value: 0.5420016101916201
329
  name: Max Ap
330
  ---
331
 
@@ -388,7 +388,7 @@ Then you can load this model and run inference.
388
  from sentence_transformers import SentenceTransformer
389
 
390
  # Download from the 🤗 Hub
391
- model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest-checkpoints-tmp")
392
  # Run inference
393
  sentences = [
394
  'who did ben assault in home and away',
@@ -437,18 +437,18 @@ You can finetune this model on your own dataset.
437
  * Dataset: `sts-test`
438
  * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
439
 
440
- | Metric | Value |
441
- |:--------------------|:----------|
442
- | pearson_cosine | 0.8193 |
443
- | **spearman_cosine** | **0.868** |
444
- | pearson_manhattan | 0.844 |
445
- | spearman_manhattan | 0.851 |
446
- | pearson_euclidean | 0.8465 |
447
- | spearman_euclidean | 0.8542 |
448
- | pearson_dot | 0.8275 |
449
- | spearman_dot | 0.8556 |
450
- | pearson_max | 0.8465 |
451
- | spearman_max | 0.868 |
452
 
453
  #### Triplet
454
  * Dataset: `NLI-v2`
@@ -466,43 +466,43 @@ You can finetune this model on your own dataset.
466
  * Dataset: `VitaminC`
467
  * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
468
 
469
- | Metric | Value |
470
- |:-----------------------------|:----------|
471
- | cosine_accuracy | 0.5781 |
472
- | cosine_accuracy_threshold | 0.784 |
473
- | cosine_f1 | 0.6578 |
474
- | cosine_f1_threshold | 0.3945 |
475
- | cosine_precision | 0.49 |
476
- | cosine_recall | 1.0 |
477
- | cosine_ap | 0.5401 |
478
- | dot_accuracy | 0.5625 |
479
- | dot_accuracy_threshold | 323.2028 |
480
- | dot_f1 | 0.6575 |
481
- | dot_f1_threshold | 198.0435 |
482
- | dot_precision | 0.4959 |
483
- | dot_recall | 0.9756 |
484
- | dot_ap | 0.542 |
485
- | manhattan_accuracy | 0.5703 |
486
- | manhattan_accuracy_threshold | 275.1253 |
487
- | manhattan_f1 | 0.6577 |
488
- | manhattan_f1_threshold | 457.0499 |
489
- | manhattan_precision | 0.4919 |
490
- | manhattan_recall | 0.9919 |
491
- | manhattan_ap | 0.5341 |
492
- | euclidean_accuracy | 0.5859 |
493
- | euclidean_accuracy_threshold | 13.8421 |
494
- | euclidean_f1 | 0.6578 |
495
- | euclidean_f1_threshold | 22.5957 |
496
- | euclidean_precision | 0.49 |
497
- | euclidean_recall | 1.0 |
498
- | euclidean_ap | 0.5392 |
499
- | max_accuracy | 0.5859 |
500
- | max_accuracy_threshold | 323.2028 |
501
- | max_f1 | 0.6578 |
502
- | max_f1_threshold | 457.0499 |
503
- | max_precision | 0.4959 |
504
- | max_recall | 1.0 |
505
- | **max_ap** | **0.542** |
506
 
507
  <!--
508
  ## Bias, Risks and Limitations
@@ -1151,14 +1151,14 @@ You can finetune this model on your own dataset.
1151
  #### Non-Default Hyperparameters
1152
 
1153
  - `eval_strategy`: steps
1154
- - `per_device_train_batch_size`: 160
1155
  - `per_device_eval_batch_size`: 64
1156
- - `gradient_accumulation_steps`: 8
1157
  - `learning_rate`: 4e-05
1158
- - `weight_decay`: 0.0001
1159
  - `lr_scheduler_type`: cosine_with_min_lr
1160
- - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
1161
- - `warmup_ratio`: 0.33
1162
  - `save_safetensors`: False
1163
  - `fp16`: True
1164
  - `push_to_hub`: True
@@ -1173,14 +1173,14 @@ You can finetune this model on your own dataset.
1173
  - `do_predict`: False
1174
  - `eval_strategy`: steps
1175
  - `prediction_loss_only`: True
1176
- - `per_device_train_batch_size`: 160
1177
  - `per_device_eval_batch_size`: 64
1178
  - `per_gpu_train_batch_size`: None
1179
  - `per_gpu_eval_batch_size`: None
1180
- - `gradient_accumulation_steps`: 8
1181
  - `eval_accumulation_steps`: None
1182
  - `learning_rate`: 4e-05
1183
- - `weight_decay`: 0.0001
1184
  - `adam_beta1`: 0.9
1185
  - `adam_beta2`: 0.999
1186
  - `adam_epsilon`: 1e-08
@@ -1188,8 +1188,8 @@ You can finetune this model on your own dataset.
1188
  - `num_train_epochs`: 3
1189
  - `max_steps`: -1
1190
  - `lr_scheduler_type`: cosine_with_min_lr
1191
- - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1.3333333333333335e-05}
1192
- - `warmup_ratio`: 0.33
1193
  - `warmup_steps`: 0
1194
  - `log_level`: passive
1195
  - `log_level_replica`: warning
@@ -1282,6 +1282,8 @@ You can finetune this model on your own dataset.
1282
  </details>
1283
 
1284
  ### Training Logs
 
 
1285
  | Epoch | Step | Training Loss | vitaminc-pairs loss | trivia pairs loss | xsum-pairs loss | paws-pos loss | sciq pairs loss | msmarco pairs loss | openbookqa pairs loss | gooaq pairs loss | nq pairs loss | scitail-pairs-pos loss | qasc pairs loss | negation-triplets loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
1286
  |:------:|:----:|:-------------:|:-------------------:|:-----------------:|:---------------:|:-------------:|:---------------:|:------------------:|:---------------------:|:----------------:|:-------------:|:----------------------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:------------------------:|
1287
  | 0.0169 | 3 | 7.2372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
@@ -1355,7 +1357,185 @@ You can finetune this model on your own dataset.
1355
  | 1.1687 | 207 | 0.8365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1356
  | 1.1856 | 210 | 1.1012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1357
  | 1.2025 | 213 | 1.0016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358
 
 
1359
 
1360
  ### Framework Versions
1361
  - Python: 3.10.13
 
164
  type: sts-test
165
  metrics:
166
  - type: pearson_cosine
167
+ value: 0.854968805652805
168
  name: Pearson Cosine
169
  - type: spearman_cosine
170
+ value: 0.8956917253507228
171
  name: Spearman Cosine
172
  - type: pearson_manhattan
173
+ value: 0.8864271118397893
174
  name: Pearson Manhattan
175
  - type: spearman_manhattan
176
+ value: 0.890112288382125
177
  name: Spearman Manhattan
178
  - type: pearson_euclidean
179
+ value: 0.8853384519331917
180
  name: Pearson Euclidean
181
  - type: spearman_euclidean
182
+ value: 0.8875533307992096
183
  name: Spearman Euclidean
184
  - type: pearson_dot
185
+ value: 0.8534110565503882
186
  name: Pearson Dot
187
  - type: spearman_dot
188
+ value: 0.877726389450295
189
  name: Spearman Dot
190
  - type: pearson_max
191
+ value: 0.8864271118397893
192
  name: Pearson Max
193
  - type: spearman_max
194
+ value: 0.8956917253507228
195
  name: Spearman Max
196
  - task:
197
  type: triplet
 
223
  type: VitaminC
224
  metrics:
225
  - type: cosine_accuracy
226
+ value: 0.58984375
227
  name: Cosine Accuracy
228
  - type: cosine_accuracy_threshold
229
+ value: 0.8360881209373474
230
  name: Cosine Accuracy Threshold
231
  - type: cosine_f1
232
+ value: 0.6559999999999999
233
  name: Cosine F1
234
  - type: cosine_f1_threshold
235
+ value: 0.26484909653663635
236
  name: Cosine F1 Threshold
237
  - type: cosine_precision
238
+ value: 0.4880952380952381
239
  name: Cosine Precision
240
  - type: cosine_recall
241
  value: 1.0
242
  name: Cosine Recall
243
  - type: cosine_ap
244
+ value: 0.5601848253252508
245
  name: Cosine Ap
246
  - type: dot_accuracy
247
+ value: 0.58203125
248
  name: Dot Accuracy
249
  - type: dot_accuracy_threshold
250
+ value: 314.279052734375
251
  name: Dot Accuracy Threshold
252
  - type: dot_f1
253
+ value: 0.6558265582655827
254
  name: Dot F1
255
  - type: dot_f1_threshold
256
+ value: 126.1304931640625
257
  name: Dot F1 Threshold
258
  - type: dot_precision
259
+ value: 0.491869918699187
260
  name: Dot Precision
261
  - type: dot_recall
262
+ value: 0.983739837398374
263
  name: Dot Recall
264
  - type: dot_ap
265
+ value: 0.5513292673695236
266
  name: Dot Ap
267
  - type: manhattan_accuracy
268
+ value: 0.57421875
269
  name: Manhattan Accuracy
270
  - type: manhattan_accuracy_threshold
271
+ value: 244.02972412109375
272
  name: Manhattan Accuracy Threshold
273
  - type: manhattan_f1
274
+ value: 0.6577540106951871
275
  name: Manhattan F1
276
  - type: manhattan_f1_threshold
277
+ value: 498.5762634277344
278
  name: Manhattan F1 Threshold
279
  - type: manhattan_precision
280
+ value: 0.4900398406374502
281
  name: Manhattan Precision
282
  - type: manhattan_recall
283
+ value: 1.0
284
  name: Manhattan Recall
285
  - type: manhattan_ap
286
+ value: 0.5562338006363409
287
  name: Manhattan Ap
288
  - type: euclidean_accuracy
289
+ value: 0.578125
290
  name: Euclidean Accuracy
291
  - type: euclidean_accuracy_threshold
292
+ value: 15.01893424987793
293
  name: Euclidean Accuracy Threshold
294
  - type: euclidean_f1
295
  value: 0.6577540106951871
296
  name: Euclidean F1
297
  - type: euclidean_f1_threshold
298
+ value: 23.76571273803711
299
  name: Euclidean F1 Threshold
300
  - type: euclidean_precision
301
  value: 0.4900398406374502
 
304
  value: 1.0
305
  name: Euclidean Recall
306
  - type: euclidean_ap
307
+ value: 0.5549132214851141
308
  name: Euclidean Ap
309
  - type: max_accuracy
310
+ value: 0.58984375
311
  name: Max Accuracy
312
  - type: max_accuracy_threshold
313
+ value: 314.279052734375
314
  name: Max Accuracy Threshold
315
  - type: max_f1
316
  value: 0.6577540106951871
317
  name: Max F1
318
  - type: max_f1_threshold
319
+ value: 498.5762634277344
320
  name: Max F1 Threshold
321
  - type: max_precision
322
+ value: 0.491869918699187
323
  name: Max Precision
324
  - type: max_recall
325
  value: 1.0
326
  name: Max Recall
327
  - type: max_ap
328
+ value: 0.5601848253252508
329
  name: Max Ap
330
  ---
331
 
 
388
  from sentence_transformers import SentenceTransformer
389
 
390
  # Download from the 🤗 Hub
391
+ model = SentenceTransformer("bobox/DeBERTa-small-ST-v1-toytest")
392
  # Run inference
393
  sentences = [
394
  'who did ben assault in home and away',
 
437
  * Dataset: `sts-test`
438
  * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
439
 
440
+ | Metric | Value |
441
+ |:--------------------|:-----------|
442
+ | pearson_cosine | 0.855 |
443
+ | **spearman_cosine** | **0.8957** |
444
+ | pearson_manhattan | 0.8864 |
445
+ | spearman_manhattan | 0.8901 |
446
+ | pearson_euclidean | 0.8853 |
447
+ | spearman_euclidean | 0.8876 |
448
+ | pearson_dot | 0.8534 |
449
+ | spearman_dot | 0.8777 |
450
+ | pearson_max | 0.8864 |
451
+ | spearman_max | 0.8957 |
452
 
453
  #### Triplet
454
  * Dataset: `NLI-v2`
 
466
  * Dataset: `VitaminC`
467
  * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
468
 
469
+ | Metric | Value |
470
+ |:-----------------------------|:-----------|
471
+ | cosine_accuracy | 0.5898 |
472
+ | cosine_accuracy_threshold | 0.8361 |
473
+ | cosine_f1 | 0.656 |
474
+ | cosine_f1_threshold | 0.2648 |
475
+ | cosine_precision | 0.4881 |
476
+ | cosine_recall | 1.0 |
477
+ | cosine_ap | 0.5602 |
478
+ | dot_accuracy | 0.582 |
479
+ | dot_accuracy_threshold | 314.2791 |
480
+ | dot_f1 | 0.6558 |
481
+ | dot_f1_threshold | 126.1305 |
482
+ | dot_precision | 0.4919 |
483
+ | dot_recall | 0.9837 |
484
+ | dot_ap | 0.5513 |
485
+ | manhattan_accuracy | 0.5742 |
486
+ | manhattan_accuracy_threshold | 244.0297 |
487
+ | manhattan_f1 | 0.6578 |
488
+ | manhattan_f1_threshold | 498.5763 |
489
+ | manhattan_precision | 0.49 |
490
+ | manhattan_recall | 1.0 |
491
+ | manhattan_ap | 0.5562 |
492
+ | euclidean_accuracy | 0.5781 |
493
+ | euclidean_accuracy_threshold | 15.0189 |
494
+ | euclidean_f1 | 0.6578 |
495
+ | euclidean_f1_threshold | 23.7657 |
496
+ | euclidean_precision | 0.49 |
497
+ | euclidean_recall | 1.0 |
498
+ | euclidean_ap | 0.5549 |
499
+ | max_accuracy | 0.5898 |
500
+ | max_accuracy_threshold | 314.2791 |
501
+ | max_f1 | 0.6578 |
502
+ | max_f1_threshold | 498.5763 |
503
+ | max_precision | 0.4919 |
504
+ | max_recall | 1.0 |
505
+ | **max_ap** | **0.5602** |
506
 
507
  <!--
508
  ## Bias, Risks and Limitations
 
1151
  #### Non-Default Hyperparameters
1152
 
1153
  - `eval_strategy`: steps
1154
+ - `per_device_train_batch_size`: 320
1155
  - `per_device_eval_batch_size`: 64
1156
+ - `gradient_accumulation_steps`: 4
1157
  - `learning_rate`: 4e-05
1158
+ - `weight_decay`: 5e-05
1159
  - `lr_scheduler_type`: cosine_with_min_lr
1160
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
1161
+ - `warmup_ratio`: 0.15
1162
  - `save_safetensors`: False
1163
  - `fp16`: True
1164
  - `push_to_hub`: True
 
1173
  - `do_predict`: False
1174
  - `eval_strategy`: steps
1175
  - `prediction_loss_only`: True
1176
+ - `per_device_train_batch_size`: 320
1177
  - `per_device_eval_batch_size`: 64
1178
  - `per_gpu_train_batch_size`: None
1179
  - `per_gpu_eval_batch_size`: None
1180
+ - `gradient_accumulation_steps`: 4
1181
  - `eval_accumulation_steps`: None
1182
  - `learning_rate`: 4e-05
1183
+ - `weight_decay`: 5e-05
1184
  - `adam_beta1`: 0.9
1185
  - `adam_beta2`: 0.999
1186
  - `adam_epsilon`: 1e-08
 
1188
  - `num_train_epochs`: 3
1189
  - `max_steps`: -1
1190
  - `lr_scheduler_type`: cosine_with_min_lr
1191
+ - `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
1192
+ - `warmup_ratio`: 0.15
1193
  - `warmup_steps`: 0
1194
  - `log_level`: passive
1195
  - `log_level_replica`: warning
 
1282
  </details>
1283
 
1284
  ### Training Logs
1285
+ <details><summary>Click to expand</summary>
1286
+
1287
  | Epoch | Step | Training Loss | vitaminc-pairs loss | trivia pairs loss | xsum-pairs loss | paws-pos loss | sciq pairs loss | msmarco pairs loss | openbookqa pairs loss | gooaq pairs loss | nq pairs loss | scitail-pairs-pos loss | qasc pairs loss | negation-triplets loss | NLI-v2_max_accuracy | VitaminC_max_ap | sts-test_spearman_cosine |
1288
  |:------:|:----:|:-------------:|:-------------------:|:-----------------:|:---------------:|:-------------:|:---------------:|:------------------:|:---------------------:|:----------------:|:-------------:|:----------------------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:------------------------:|
1289
  | 0.0169 | 3 | 7.2372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
 
1357
  | 1.1687 | 207 | 0.8365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1358
  | 1.1856 | 210 | 1.1012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1359
  | 1.2025 | 213 | 1.0016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1360
+ | 1.2195 | 216 | 1.0957 | 2.5466 | 1.1412 | 0.3591 | 0.0395 | 0.0517 | 0.5819 | 0.9366 | 0.9686 | 0.8172 | 0.1901 | 0.3075 | 1.9161 | 1.0 | 0.5385 | 0.8656 |
1361
+ | 1.2364 | 219 | 1.1273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1362
+ | 1.2534 | 222 | 1.2568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1363
+ | 1.2703 | 225 | 0.873 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1364
+ | 1.2872 | 228 | 1.0003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1365
+ | 1.3042 | 231 | 1.142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1366
+ | 1.3211 | 234 | 0.807 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1367
+ | 1.3380 | 237 | 1.0231 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1368
+ | 1.3550 | 240 | 0.797 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1369
+ | 1.3719 | 243 | 0.8473 | 2.5140 | 1.1067 | 0.2802 | 0.0343 | 0.0467 | 0.5559 | 0.8562 | 0.8929 | 0.7435 | 0.1750 | 0.2355 | 1.8629 | 1.0 | 0.5508 | 0.8687 |
1370
+ | 1.3888 | 246 | 0.9531 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1371
+ | 1.4058 | 249 | 0.9023 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1372
+ | 1.4227 | 252 | 0.8922 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1373
+ | 1.4397 | 255 | 0.9874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1374
+ | 1.4566 | 258 | 0.8508 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1375
+ | 1.4735 | 261 | 0.7149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1376
+ | 1.4905 | 264 | 0.894 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1377
+ | 1.5074 | 267 | 0.867 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1378
+ | 1.5243 | 270 | 0.7493 | 2.5574 | 1.0634 | 0.2217 | 0.0319 | 0.0435 | 0.5027 | 0.7999 | 0.8005 | 0.6530 | 0.1693 | 0.2443 | 1.8535 | 1.0 | 0.5499 | 0.8716 |
1379
+ | 1.5413 | 273 | 0.7974 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1380
+ | 1.5582 | 276 | 0.797 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1381
+ | 1.5752 | 279 | 0.6749 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1382
+ | 1.5921 | 282 | 0.9325 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1383
+ | 1.6090 | 285 | 0.8418 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1384
+ | 1.6260 | 288 | 1.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1385
+ | 1.6429 | 291 | 0.6961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1386
+ | 1.6598 | 294 | 0.9361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1387
+ | 1.6768 | 297 | 0.6747 | 2.4871 | 0.9762 | 0.2242 | 0.0291 | 0.0396 | 0.5025 | 0.7668 | 0.7546 | 0.6427 | 0.1596 | 0.1963 | 1.7349 | 1.0 | 0.5461 | 0.8787 |
1388
+ | 1.6937 | 300 | 0.7786 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1389
+ | 1.7107 | 303 | 0.7171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1390
+ | 1.7276 | 306 | 0.6627 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1391
+ | 1.7445 | 309 | 0.6711 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1392
+ | 1.7615 | 312 | 0.9076 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1393
+ | 1.7784 | 315 | 0.7414 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1394
+ | 1.7953 | 318 | 0.582 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1395
+ | 1.8123 | 321 | 0.6068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1396
+ | 1.8292 | 324 | 0.6219 | 2.5197 | 1.0206 | 0.1630 | 0.0273 | 0.0383 | 0.4859 | 0.7109 | 0.7736 | 0.5533 | 0.1535 | 0.2044 | 1.7016 | 1.0 | 0.5532 | 0.8807 |
1397
+ | 1.8462 | 327 | 0.5862 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1398
+ | 1.8631 | 330 | 0.678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1399
+ | 1.8800 | 333 | 0.6272 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1400
+ | 1.8970 | 336 | 0.5048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1401
+ | 1.9139 | 339 | 0.7653 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1402
+ | 1.9308 | 342 | 0.6613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1403
+ | 1.9478 | 345 | 0.6122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1404
+ | 1.9647 | 348 | 0.5939 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1405
+ | 1.9817 | 351 | 0.6923 | 2.4379 | 0.9582 | 0.1464 | 0.0264 | 0.0382 | 0.4348 | 0.7554 | 0.7220 | 0.5432 | 0.1481 | 0.1640 | 1.7345 | 1.0 | 0.5560 | 0.8837 |
1406
+ | 1.9986 | 354 | 0.5712 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1407
+ | 2.0155 | 357 | 0.5969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1408
+ | 2.0325 | 360 | 0.5881 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1409
+ | 2.0494 | 363 | 0.6005 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1410
+ | 2.0663 | 366 | 0.6066 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1411
+ | 2.0833 | 369 | 0.4921 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1412
+ | 2.1002 | 372 | 0.5354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1413
+ | 2.1171 | 375 | 0.5602 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1414
+ | 2.1341 | 378 | 0.5686 | 2.3908 | 0.9614 | 0.1454 | 0.0271 | 0.0374 | 0.4246 | 0.7796 | 0.6965 | 0.5298 | 0.1401 | 0.1604 | 1.7678 | 1.0 | 0.5539 | 0.8804 |
1415
+ | 2.1510 | 381 | 0.6496 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1416
+ | 2.1680 | 384 | 0.4713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1417
+ | 2.1849 | 387 | 0.6345 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1418
+ | 2.2018 | 390 | 0.5994 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1419
+ | 2.2188 | 393 | 0.6763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1420
+ | 2.2357 | 396 | 0.7254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1421
+ | 2.2526 | 399 | 0.8032 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1422
+ | 2.2696 | 402 | 0.4914 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1423
+ | 2.2865 | 405 | 0.6307 | 2.4388 | 0.9862 | 0.1308 | 0.0262 | 0.0379 | 0.3928 | 0.7434 | 0.6976 | 0.4998 | 0.1192 | 0.1466 | 1.7093 | 1.0 | 0.5533 | 0.8859 |
1424
+ | 2.3035 | 408 | 0.7493 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1425
+ | 2.3204 | 411 | 0.5139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1426
+ | 2.3373 | 414 | 0.6364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1427
+ | 2.3543 | 417 | 0.4763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1428
+ | 2.3712 | 420 | 0.583 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1429
+ | 2.3881 | 423 | 0.5912 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1430
+ | 2.4051 | 426 | 0.5936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1431
+ | 2.4220 | 429 | 0.5959 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1432
+ | 2.4390 | 432 | 0.676 | 2.4265 | 0.9634 | 0.1220 | 0.0260 | 0.0362 | 0.4292 | 0.7433 | 0.6771 | 0.4752 | 0.1282 | 0.1304 | 1.6943 | 1.0 | 0.5532 | 0.8878 |
1433
+ | 2.4559 | 435 | 0.5622 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1434
+ | 2.4728 | 438 | 0.4633 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1435
+ | 2.4898 | 441 | 0.5955 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1436
+ | 2.5067 | 444 | 0.6271 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1437
+ | 2.5236 | 447 | 0.4988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1438
+ | 2.5406 | 450 | 0.519 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1439
+ | 2.5575 | 453 | 0.5538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1440
+ | 2.5745 | 456 | 0.4826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1441
+ | 2.5914 | 459 | 0.6322 | 2.4541 | 0.9231 | 0.1224 | 0.0253 | 0.0345 | 0.4048 | 0.7595 | 0.6607 | 0.4713 | 0.1168 | 0.1323 | 1.7024 | 1.0 | 0.5557 | 0.8868 |
1442
+ | 2.6083 | 462 | 0.6342 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1443
+ | 2.6253 | 465 | 0.7012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1444
+ | 2.6422 | 468 | 0.4175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1445
+ | 2.6591 | 471 | 0.7575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1446
+ | 2.6761 | 474 | 0.4687 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1447
+ | 2.6930 | 477 | 0.5907 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1448
+ | 2.7100 | 480 | 0.4796 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1449
+ | 2.7269 | 483 | 0.4809 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1450
+ | 2.7438 | 486 | 0.4696 | 2.4899 | 0.9546 | 0.1169 | 0.0247 | 0.0343 | 0.4138 | 0.7444 | 0.6688 | 0.4838 | 0.1166 | 0.1279 | 1.6605 | 1.0 | 0.5527 | 0.8883 |
1451
+ | 2.7608 | 489 | 0.6588 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1452
+ | 2.7777 | 492 | 0.5675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1453
+ | 2.7946 | 495 | 0.4007 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1454
+ | 2.8116 | 498 | 0.4476 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1455
+ | 2.8285 | 501 | 0.433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1456
+ | 2.8454 | 504 | 0.4154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1457
+ | 2.8624 | 507 | 0.5416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1458
+ | 2.8793 | 510 | 0.4546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1459
+ | 2.8963 | 513 | 0.3326 | 2.4924 | 0.9493 | 0.1071 | 0.0248 | 0.0344 | 0.4033 | 0.7376 | 0.6558 | 0.4478 | 0.1148 | 0.1219 | 1.6918 | 1.0 | 0.5534 | 0.8907 |
1460
+ | 2.9132 | 516 | 0.594 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1461
+ | 2.9301 | 519 | 0.4727 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1462
+ | 2.9471 | 522 | 0.4701 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1463
+ | 2.9640 | 525 | 0.4606 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1464
+ | 2.9809 | 528 | 0.5025 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1465
+ | 2.9979 | 531 | 0.4314 | 2.4532 | 0.9270 | 0.1131 | 0.0247 | 0.0344 | 0.3951 | 0.7123 | 0.6345 | 0.4383 | 0.1143 | 0.1159 | 1.7003 | 1.0 | 0.5539 | 0.8904 |
1466
+ | 0.0169 | 3 | 0.6012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1467
+ | 0.0337 | 6 | 0.7573 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1468
+ | 0.0506 | 9 | 0.9212 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1469
+ | 0.0674 | 12 | 0.6117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1470
+ | 0.0843 | 15 | 0.8545 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1471
+ | 0.1011 | 18 | 0.6515 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1472
+ | 0.1180 | 21 | 0.7159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1473
+ | 0.1348 | 24 | 0.7019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1474
+ | 0.1517 | 27 | 0.4411 | 2.4659 | 0.9318 | 0.1117 | 0.0249 | 0.0345 | 0.3955 | 0.7092 | 0.6506 | 0.4205 | 0.1150 | 0.1110 | 1.7311 | 1.0 | 0.5512 | 0.8906 |
1475
+ | 0.1685 | 30 | 0.5125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1476
+ | 0.1854 | 33 | 0.6885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1477
+ | 0.2022 | 36 | 0.6435 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1478
+ | 0.2191 | 39 | 0.753 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1479
+ | 0.2360 | 42 | 0.7427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1480
+ | 0.2528 | 45 | 0.5083 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1481
+ | 0.2697 | 48 | 0.7454 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1482
+ | 0.2865 | 51 | 0.8356 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1483
+ | 0.3034 | 54 | 0.8864 | 2.4545 | 0.9158 | 0.1009 | 0.0252 | 0.0347 | 0.3809 | 0.7240 | 0.6208 | 0.4417 | 0.1117 | 0.1055 | 1.7278 | 1.0 | 0.5499 | 0.8877 |
1484
+ | 0.3202 | 57 | 0.6015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1485
+ | 0.3371 | 60 | 0.9482 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1486
+ | 0.3539 | 63 | 0.5404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1487
+ | 0.3708 | 66 | 0.805 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1488
+ | 0.3876 | 69 | 0.7184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1489
+ | 0.4045 | 72 | 0.8708 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1490
+ | 0.4213 | 75 | 0.8327 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1491
+ | 0.4382 | 78 | 0.5025 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1492
+ | 0.4551 | 81 | 0.6517 | 2.3539 | 0.9324 | 0.0842 | 0.0244 | 0.0348 | 0.3454 | 0.7161 | 0.6094 | 0.4443 | 0.1182 | 0.1060 | 1.6492 | 1.0 | 0.5557 | 0.8904 |
1493
+ | 0.4719 | 84 | 0.5801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1494
+ | 0.4888 | 87 | 0.791 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1495
+ | 0.5056 | 90 | 0.6042 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1496
+ | 0.5225 | 93 | 0.7559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1497
+ | 0.5393 | 96 | 0.6258 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1498
+ | 0.5562 | 99 | 0.8853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1499
+ | 0.5730 | 102 | 0.5947 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1500
+ | 0.5899 | 105 | 0.644 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1501
+ | 0.6067 | 108 | 0.5682 | 2.4271 | 0.9260 | 0.1041 | 0.0246 | 0.0336 | 0.3448 | 0.7514 | 0.6302 | 0.4307 | 0.1059 | 0.1083 | 1.6174 | 1.0 | 0.5569 | 0.8959 |
1502
+ | 0.6236 | 111 | 0.5974 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1503
+ | 0.6404 | 114 | 0.649 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1504
+ | 0.6573 | 117 | 0.6966 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1505
+ | 0.6742 | 120 | 0.542 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1506
+ | 0.6910 | 123 | 0.8583 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1507
+ | 0.7079 | 126 | 0.6416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1508
+ | 0.7247 | 129 | 0.6273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1509
+ | 0.7416 | 132 | 0.8621 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1510
+ | 0.7584 | 135 | 0.7221 | 2.3367 | 0.9275 | 0.0930 | 0.0246 | 0.0316 | 0.3425 | 0.7485 | 0.5840 | 0.4126 | 0.1094 | 0.1021 | 1.5713 | 1.0 | 0.5611 | 0.8965 |
1511
+ | 0.7753 | 138 | 0.9421 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1512
+ | 0.7921 | 141 | 0.6845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1513
+ | 0.8090 | 144 | 0.5464 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1514
+ | 0.8258 | 147 | 0.6338 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1515
+ | 0.8427 | 150 | 0.4993 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1516
+ | 0.8596 | 153 | 0.6939 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1517
+ | 0.8764 | 156 | 0.5791 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1518
+ | 0.8933 | 159 | 0.9226 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1519
+ | 0.9101 | 162 | 0.6336 | 2.3761 | 0.9004 | 0.0762 | 0.0245 | 0.0321 | 0.3709 | 0.6995 | 0.5496 | 0.3908 | 0.1001 | 0.1031 | 1.6305 | 1.0 | 0.5603 | 0.8965 |
1520
+ | 0.9270 | 165 | 0.5395 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1521
+ | 0.9438 | 168 | 0.6874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1522
+ | 0.9607 | 171 | 0.5614 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1523
+ | 0.9775 | 174 | 0.5812 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1524
+ | 0.9944 | 177 | 0.427 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1525
+ | 1.0112 | 180 | 0.4603 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1526
+ | 1.0281 | 183 | 0.6493 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1527
+ | 1.0449 | 186 | 0.6646 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1528
+ | 1.0618 | 189 | 0.7239 | 2.3752 | 0.8819 | 0.0660 | 0.0248 | 0.0331 | 0.3359 | 0.6889 | 0.5454 | 0.3691 | 0.1044 | 0.1008 | 1.5803 | 1.0 | 0.5602 | 0.8957 |
1529
+ | 1.0787 | 192 | 0.7593 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1530
+ | 1.0955 | 195 | 0.6877 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1531
+ | 1.1124 | 198 | 0.5482 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1532
+ | 1.1292 | 201 | 0.6047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1533
+ | 1.1461 | 204 | 0.4358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1534
+ | 1.1629 | 207 | 0.3343 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1535
+ | 1.1798 | 210 | 0.5624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1536
+ | 1.1966 | 213 | 0.4578 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1537
 
1538
+ </details>
1539
 
1540
  ### Framework Versions
1541
  - Python: 3.10.13
checkpoint-214/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52c905c776e5ae71066e2801101078aabbec9b5878ff9fd90c19897056191b45
3
  size 1130520122
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f888620033c3bd5e6338cc2de6a22da54b58eae0dbd8f5b734cb15d1c2905daf
3
  size 1130520122
checkpoint-214/pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ddba6327b1a377cfdcef6125292be85fa16e40cb025172fd1e124afb94b69984
3
  size 565251810
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729d8a3d31610e823553fa34bfea22348c6a7524dcb7e3cccf567499d4707072
3
  size 565251810
checkpoint-214/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c970bca00c34ca2adef33f13d94cd397d493fc8e23507c794e76d9ad3a07652
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fe7816ba1779994fa8b784691e1f822a9d90f77ff053db585d38f5713da6d72
3
  size 14244
checkpoint-214/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7306392a8e5051864ce8e84fe594d9ecbfcfe132886d49eb79d53d8d1b602099
3
  size 1064
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a01939658d28c786324bde1d2fa56a76d998cefa50cd5d29dbb3e2118fc9722
3
  size 1064
checkpoint-214/trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff
 
checkpoint-214/training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:526057a01875662c89243f2f1101012515e0f154fca67a38aba3fb44dcb2d6d0
3
  size 5688
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72d6ebbf0ffc45e3199e7e67afe865d0f054853a38220ea09a039bd30fc6a761
3
  size 5688