Training in progress, step 305, checkpoint
Browse files- checkpoint-305/1_AdvancedWeightedPooling/config.json +12 -0
- checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin +3 -0
- checkpoint-305/README.md +1174 -0
- checkpoint-305/added_tokens.json +3 -0
- checkpoint-305/config.json +35 -0
- checkpoint-305/config_sentence_transformers.json +10 -0
- checkpoint-305/modules.json +14 -0
- checkpoint-305/optimizer.pt +3 -0
- checkpoint-305/pytorch_model.bin +3 -0
- checkpoint-305/rng_state.pth +3 -0
- checkpoint-305/scheduler.pt +3 -0
- checkpoint-305/sentence_bert_config.json +4 -0
- checkpoint-305/special_tokens_map.json +15 -0
- checkpoint-305/spm.model +3 -0
- checkpoint-305/tokenizer.json +0 -0
- checkpoint-305/tokenizer_config.json +58 -0
- checkpoint-305/trainer_state.json +2257 -0
- checkpoint-305/training_args.bin +3 -0
checkpoint-305/1_AdvancedWeightedPooling/config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"num_heads": 4,
|
4 |
+
"dropout": 0.025,
|
5 |
+
"bias": true,
|
6 |
+
"gate_min": 0.05,
|
7 |
+
"gate_max": 0.95,
|
8 |
+
"gate_dropout": 0.01,
|
9 |
+
"dropout_gate_open": 0.075,
|
10 |
+
"dropout_gate_close": 0.05,
|
11 |
+
"CLS_self_attn": 0
|
12 |
+
}
|
checkpoint-305/1_AdvancedWeightedPooling/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f1a56dcfcfbff23630b549e575f6ec58439394ba18910f67aaa7762af6f7270
|
3 |
+
size 18940723
|
checkpoint-305/README.md
ADDED
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-small
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- pearson_cosine
|
6 |
+
- spearman_cosine
|
7 |
+
- pearson_manhattan
|
8 |
+
- spearman_manhattan
|
9 |
+
- pearson_euclidean
|
10 |
+
- spearman_euclidean
|
11 |
+
- pearson_dot
|
12 |
+
- spearman_dot
|
13 |
+
- pearson_max
|
14 |
+
- spearman_max
|
15 |
+
- cosine_accuracy
|
16 |
+
- cosine_accuracy_threshold
|
17 |
+
- cosine_f1
|
18 |
+
- cosine_f1_threshold
|
19 |
+
- cosine_precision
|
20 |
+
- cosine_recall
|
21 |
+
- cosine_ap
|
22 |
+
- dot_accuracy
|
23 |
+
- dot_accuracy_threshold
|
24 |
+
- dot_f1
|
25 |
+
- dot_f1_threshold
|
26 |
+
- dot_precision
|
27 |
+
- dot_recall
|
28 |
+
- dot_ap
|
29 |
+
- manhattan_accuracy
|
30 |
+
- manhattan_accuracy_threshold
|
31 |
+
- manhattan_f1
|
32 |
+
- manhattan_f1_threshold
|
33 |
+
- manhattan_precision
|
34 |
+
- manhattan_recall
|
35 |
+
- manhattan_ap
|
36 |
+
- euclidean_accuracy
|
37 |
+
- euclidean_accuracy_threshold
|
38 |
+
- euclidean_f1
|
39 |
+
- euclidean_f1_threshold
|
40 |
+
- euclidean_precision
|
41 |
+
- euclidean_recall
|
42 |
+
- euclidean_ap
|
43 |
+
- max_accuracy
|
44 |
+
- max_accuracy_threshold
|
45 |
+
- max_f1
|
46 |
+
- max_f1_threshold
|
47 |
+
- max_precision
|
48 |
+
- max_recall
|
49 |
+
- max_ap
|
50 |
+
pipeline_tag: sentence-similarity
|
51 |
+
tags:
|
52 |
+
- sentence-transformers
|
53 |
+
- sentence-similarity
|
54 |
+
- feature-extraction
|
55 |
+
- generated_from_trainer
|
56 |
+
- dataset_size:32500
|
57 |
+
- loss:GISTEmbedLoss
|
58 |
+
widget:
|
59 |
+
- source_sentence: What was the name of Jed's nephew in The Beverly Hillbillies?
|
60 |
+
sentences:
|
61 |
+
- Jed Clampett - The Beverly Hillbillies Characters - ShareTV Buddy Ebsen began
|
62 |
+
his career as a dancer in the late 1920s in a Broadway chorus. He later formed
|
63 |
+
a vaudeville ... Character Bio Although he had received little formal education,
|
64 |
+
Jed Clampett had a good deal of common sense. A good-natured man, he is the apparent
|
65 |
+
head of the family. Jed's wife (Elly May's mother) died, but is referred to in
|
66 |
+
the episode "Duke Steals A Wife" as Rose Ellen. Jed was shown to be an expert
|
67 |
+
marksman and was extremely loyal to his family and kinfolk. The huge oil pool
|
68 |
+
in the swamp he owned was the beginning of his rags-to-riches journey to Beverly
|
69 |
+
Hills. Although he longed for the old ways back in the hills, he made the best
|
70 |
+
of being in Beverly Hills. Whenever he had anything on his mind, he would sit
|
71 |
+
on the curbstone of his mansion and whittle until he came up with the answer.
|
72 |
+
Jedediah, the version of Jed's name used in the 1993 Beverly Hillbillies theatrical
|
73 |
+
movie, was never mentioned in the original television series (though coincidentally,
|
74 |
+
on Ebsen's subsequent series, Barnaby Jones, Barnaby's nephew J.R. was also named
|
75 |
+
Jedediah). In one episode Jed and Granny reminisce about seeing Buddy Ebsen and
|
76 |
+
Vilma Ebsen—a joking reference to the Ebsens' song and dance act. Jed appears
|
77 |
+
in all 274 episodes. Episode Screenshots
|
78 |
+
- a stove generates heat for cooking usually
|
79 |
+
- Miss Marple series by Agatha Christie Miss Marple series 43 works, 13 primary
|
80 |
+
works Mystery series in order of publication. Miss Marple is introduced in The
|
81 |
+
Murder at the Vicarage but the books can be read in any order. Mixed short story
|
82 |
+
collections are included if some are Marple, often have horror, supernatural,
|
83 |
+
maybe detective Poirot, Pyne, or Quin. Note that "Nemesis" should be read AFTER
|
84 |
+
"A Caribbean Holiday"
|
85 |
+
- source_sentence: A recording of folk songs done for the Columbia society in 1942
|
86 |
+
was largely arranged by Pjetër Dungu .
|
87 |
+
sentences:
|
88 |
+
- Someone cooking drugs in a spoon over a candle
|
89 |
+
- A recording of folk songs made for the Columbia society in 1942 was largely arranged
|
90 |
+
by Pjetër Dungu .
|
91 |
+
- A Murder of Crows, A Parliament of Owls What do You Call a Group of Birds? Do
|
92 |
+
you know what a group of Ravens is called? What about a group of peacocks, snipe
|
93 |
+
or hummingbirds? Here is a list of Bird Collectives, terms that you can use to
|
94 |
+
describe a group of birds. Birds in general
|
95 |
+
- source_sentence: A person in a kitchen looking at the oven.
|
96 |
+
sentences:
|
97 |
+
- "staying warm has a positive impact on an animal 's survival. Furry animals grow\
|
98 |
+
\ thicker coats to keep warm in the winter. \n Furry animals grow thicker coats\
|
99 |
+
\ which has a positive impact on their survival. "
|
100 |
+
- A woman In the kitchen opening her oven.
|
101 |
+
- EE has apologised after a fault left some of its customers unable to use the internet
|
102 |
+
on their mobile devices.
|
103 |
+
- source_sentence: Air can be separated into several elements.
|
104 |
+
sentences:
|
105 |
+
- Which of the following substances can be separated into several elements?
|
106 |
+
- 'Funny Interesting Facts Humor Strange: Carl and the Passions changed band name
|
107 |
+
to what Carl and the Passions changed band name to what Beach Boys Carl and the
|
108 |
+
Passions - "So Tough" is the fifteenth studio album released by The Beach Boys
|
109 |
+
in 1972. In its initial release, it was the second disc of a two-album set with
|
110 |
+
Pet Sounds (which The Beach Boys were able to license from Capitol Records). Unfortunately,
|
111 |
+
due to the fact that Carl and the Passions - "So Tough" was a transitional album
|
112 |
+
that saw the departure of one member and the introduction of two new ones, making
|
113 |
+
it wildly inconsistent in terms of type of material present, it paled next to
|
114 |
+
their 1966 classic and was seen as something of a disappointment in its time of
|
115 |
+
release. The title of the album itself was a reference to an early band Carl Wilson
|
116 |
+
had been in as a teenager (some say a possible early name for the Beach Boys).
|
117 |
+
It was also the first album released under a new deal with Warner Bros. that allowed
|
118 |
+
the company to distribute all future Beach Boys product in foreign as well as
|
119 |
+
domestic markets.'
|
120 |
+
- Which statement correctly describes a relationship between two human body systems?
|
121 |
+
- source_sentence: What do outdoor plants require to survive?
|
122 |
+
sentences:
|
123 |
+
- "a plants require water for survival. If no rain or watering, the plant dies.\
|
124 |
+
\ \n Outdoor plants require rain to survive."
|
125 |
+
- (Vegan) soups are nutritious. In addition to them being easy to digest, most the
|
126 |
+
time, soups are made from nutrient-dense ingredients like herbs, spices, vegetables,
|
127 |
+
and beans. Because the soup is full of those nutrients AND that it's easy to digest,
|
128 |
+
your body is able to absorb more of those nutrients into your system.
|
129 |
+
- If you do the math, there are 11,238,513 possible combinations of five white balls
|
130 |
+
(without order mattering). Multiply that by the 26 possible red balls, and you
|
131 |
+
get 292,201,338 possible Powerball number combinations. At $2 per ticket, you'd
|
132 |
+
need $584,402,676 to buy every single combination and guarantee a win.
|
133 |
+
model-index:
|
134 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
135 |
+
results:
|
136 |
+
- task:
|
137 |
+
type: semantic-similarity
|
138 |
+
name: Semantic Similarity
|
139 |
+
dataset:
|
140 |
+
name: sts test
|
141 |
+
type: sts-test
|
142 |
+
metrics:
|
143 |
+
- type: pearson_cosine
|
144 |
+
value: 0.12009124140478655
|
145 |
+
name: Pearson Cosine
|
146 |
+
- type: spearman_cosine
|
147 |
+
value: 0.180573622028628
|
148 |
+
name: Spearman Cosine
|
149 |
+
- type: pearson_manhattan
|
150 |
+
value: 0.18492770691981375
|
151 |
+
name: Pearson Manhattan
|
152 |
+
- type: spearman_manhattan
|
153 |
+
value: 0.21139381574888486
|
154 |
+
name: Spearman Manhattan
|
155 |
+
- type: pearson_euclidean
|
156 |
+
value: 0.15529980522625675
|
157 |
+
name: Pearson Euclidean
|
158 |
+
- type: spearman_euclidean
|
159 |
+
value: 0.18058248277838349
|
160 |
+
name: Spearman Euclidean
|
161 |
+
- type: pearson_dot
|
162 |
+
value: 0.11997652374043644
|
163 |
+
name: Pearson Dot
|
164 |
+
- type: spearman_dot
|
165 |
+
value: 0.18041242798509616
|
166 |
+
name: Spearman Dot
|
167 |
+
- type: pearson_max
|
168 |
+
value: 0.18492770691981375
|
169 |
+
name: Pearson Max
|
170 |
+
- type: spearman_max
|
171 |
+
value: 0.21139381574888486
|
172 |
+
name: Spearman Max
|
173 |
+
- task:
|
174 |
+
type: binary-classification
|
175 |
+
name: Binary Classification
|
176 |
+
dataset:
|
177 |
+
name: allNLI dev
|
178 |
+
type: allNLI-dev
|
179 |
+
metrics:
|
180 |
+
- type: cosine_accuracy
|
181 |
+
value: 0.66796875
|
182 |
+
name: Cosine Accuracy
|
183 |
+
- type: cosine_accuracy_threshold
|
184 |
+
value: 0.9721524119377136
|
185 |
+
name: Cosine Accuracy Threshold
|
186 |
+
- type: cosine_f1
|
187 |
+
value: 0.5029239766081871
|
188 |
+
name: Cosine F1
|
189 |
+
- type: cosine_f1_threshold
|
190 |
+
value: 0.821484386920929
|
191 |
+
name: Cosine F1 Threshold
|
192 |
+
- type: cosine_precision
|
193 |
+
value: 0.33659491193737767
|
194 |
+
name: Cosine Precision
|
195 |
+
- type: cosine_recall
|
196 |
+
value: 0.9942196531791907
|
197 |
+
name: Cosine Recall
|
198 |
+
- type: cosine_ap
|
199 |
+
value: 0.3857994503224615
|
200 |
+
name: Cosine Ap
|
201 |
+
- type: dot_accuracy
|
202 |
+
value: 0.66796875
|
203 |
+
name: Dot Accuracy
|
204 |
+
- type: dot_accuracy_threshold
|
205 |
+
value: 746.914794921875
|
206 |
+
name: Dot Accuracy Threshold
|
207 |
+
- type: dot_f1
|
208 |
+
value: 0.5029239766081871
|
209 |
+
name: Dot F1
|
210 |
+
- type: dot_f1_threshold
|
211 |
+
value: 631.138916015625
|
212 |
+
name: Dot F1 Threshold
|
213 |
+
- type: dot_precision
|
214 |
+
value: 0.33659491193737767
|
215 |
+
name: Dot Precision
|
216 |
+
- type: dot_recall
|
217 |
+
value: 0.9942196531791907
|
218 |
+
name: Dot Recall
|
219 |
+
- type: dot_ap
|
220 |
+
value: 0.38572844452312516
|
221 |
+
name: Dot Ap
|
222 |
+
- type: manhattan_accuracy
|
223 |
+
value: 0.666015625
|
224 |
+
name: Manhattan Accuracy
|
225 |
+
- type: manhattan_accuracy_threshold
|
226 |
+
value: 95.24527740478516
|
227 |
+
name: Manhattan Accuracy Threshold
|
228 |
+
- type: manhattan_f1
|
229 |
+
value: 0.5045317220543807
|
230 |
+
name: Manhattan F1
|
231 |
+
- type: manhattan_f1_threshold
|
232 |
+
value: 254.973388671875
|
233 |
+
name: Manhattan F1 Threshold
|
234 |
+
- type: manhattan_precision
|
235 |
+
value: 0.34151329243353784
|
236 |
+
name: Manhattan Precision
|
237 |
+
- type: manhattan_recall
|
238 |
+
value: 0.9653179190751445
|
239 |
+
name: Manhattan Recall
|
240 |
+
- type: manhattan_ap
|
241 |
+
value: 0.39193409293721965
|
242 |
+
name: Manhattan Ap
|
243 |
+
- type: euclidean_accuracy
|
244 |
+
value: 0.66796875
|
245 |
+
name: Euclidean Accuracy
|
246 |
+
- type: euclidean_accuracy_threshold
|
247 |
+
value: 6.541449546813965
|
248 |
+
name: Euclidean Accuracy Threshold
|
249 |
+
- type: euclidean_f1
|
250 |
+
value: 0.5029239766081871
|
251 |
+
name: Euclidean F1
|
252 |
+
- type: euclidean_f1_threshold
|
253 |
+
value: 16.558998107910156
|
254 |
+
name: Euclidean F1 Threshold
|
255 |
+
- type: euclidean_precision
|
256 |
+
value: 0.33659491193737767
|
257 |
+
name: Euclidean Precision
|
258 |
+
- type: euclidean_recall
|
259 |
+
value: 0.9942196531791907
|
260 |
+
name: Euclidean Recall
|
261 |
+
- type: euclidean_ap
|
262 |
+
value: 0.3858031188548441
|
263 |
+
name: Euclidean Ap
|
264 |
+
- type: max_accuracy
|
265 |
+
value: 0.66796875
|
266 |
+
name: Max Accuracy
|
267 |
+
- type: max_accuracy_threshold
|
268 |
+
value: 746.914794921875
|
269 |
+
name: Max Accuracy Threshold
|
270 |
+
- type: max_f1
|
271 |
+
value: 0.5045317220543807
|
272 |
+
name: Max F1
|
273 |
+
- type: max_f1_threshold
|
274 |
+
value: 631.138916015625
|
275 |
+
name: Max F1 Threshold
|
276 |
+
- type: max_precision
|
277 |
+
value: 0.34151329243353784
|
278 |
+
name: Max Precision
|
279 |
+
- type: max_recall
|
280 |
+
value: 0.9942196531791907
|
281 |
+
name: Max Recall
|
282 |
+
- type: max_ap
|
283 |
+
value: 0.39193409293721965
|
284 |
+
name: Max Ap
|
285 |
+
- task:
|
286 |
+
type: binary-classification
|
287 |
+
name: Binary Classification
|
288 |
+
dataset:
|
289 |
+
name: Qnli dev
|
290 |
+
type: Qnli-dev
|
291 |
+
metrics:
|
292 |
+
- type: cosine_accuracy
|
293 |
+
value: 0.58203125
|
294 |
+
name: Cosine Accuracy
|
295 |
+
- type: cosine_accuracy_threshold
|
296 |
+
value: 0.9368094801902771
|
297 |
+
name: Cosine Accuracy Threshold
|
298 |
+
- type: cosine_f1
|
299 |
+
value: 0.6300268096514745
|
300 |
+
name: Cosine F1
|
301 |
+
- type: cosine_f1_threshold
|
302 |
+
value: 0.802739143371582
|
303 |
+
name: Cosine F1 Threshold
|
304 |
+
- type: cosine_precision
|
305 |
+
value: 0.46078431372549017
|
306 |
+
name: Cosine Precision
|
307 |
+
- type: cosine_recall
|
308 |
+
value: 0.9957627118644068
|
309 |
+
name: Cosine Recall
|
310 |
+
- type: cosine_ap
|
311 |
+
value: 0.5484497034083067
|
312 |
+
name: Cosine Ap
|
313 |
+
- type: dot_accuracy
|
314 |
+
value: 0.58203125
|
315 |
+
name: Dot Accuracy
|
316 |
+
- type: dot_accuracy_threshold
|
317 |
+
value: 719.7518310546875
|
318 |
+
name: Dot Accuracy Threshold
|
319 |
+
- type: dot_f1
|
320 |
+
value: 0.6300268096514745
|
321 |
+
name: Dot F1
|
322 |
+
- type: dot_f1_threshold
|
323 |
+
value: 616.7227783203125
|
324 |
+
name: Dot F1 Threshold
|
325 |
+
- type: dot_precision
|
326 |
+
value: 0.46078431372549017
|
327 |
+
name: Dot Precision
|
328 |
+
- type: dot_recall
|
329 |
+
value: 0.9957627118644068
|
330 |
+
name: Dot Recall
|
331 |
+
- type: dot_ap
|
332 |
+
value: 0.548461685358088
|
333 |
+
name: Dot Ap
|
334 |
+
- type: manhattan_accuracy
|
335 |
+
value: 0.607421875
|
336 |
+
name: Manhattan Accuracy
|
337 |
+
- type: manhattan_accuracy_threshold
|
338 |
+
value: 182.1275177001953
|
339 |
+
name: Manhattan Accuracy Threshold
|
340 |
+
- type: manhattan_f1
|
341 |
+
value: 0.6303724928366763
|
342 |
+
name: Manhattan F1
|
343 |
+
- type: manhattan_f1_threshold
|
344 |
+
value: 230.0565185546875
|
345 |
+
name: Manhattan F1 Threshold
|
346 |
+
- type: manhattan_precision
|
347 |
+
value: 0.47619047619047616
|
348 |
+
name: Manhattan Precision
|
349 |
+
- type: manhattan_recall
|
350 |
+
value: 0.9322033898305084
|
351 |
+
name: Manhattan Recall
|
352 |
+
- type: manhattan_ap
|
353 |
+
value: 0.5750034744442096
|
354 |
+
name: Manhattan Ap
|
355 |
+
- type: euclidean_accuracy
|
356 |
+
value: 0.58203125
|
357 |
+
name: Euclidean Accuracy
|
358 |
+
- type: euclidean_accuracy_threshold
|
359 |
+
value: 9.853867530822754
|
360 |
+
name: Euclidean Accuracy Threshold
|
361 |
+
- type: euclidean_f1
|
362 |
+
value: 0.6300268096514745
|
363 |
+
name: Euclidean F1
|
364 |
+
- type: euclidean_f1_threshold
|
365 |
+
value: 17.40953254699707
|
366 |
+
name: Euclidean F1 Threshold
|
367 |
+
- type: euclidean_precision
|
368 |
+
value: 0.46078431372549017
|
369 |
+
name: Euclidean Precision
|
370 |
+
- type: euclidean_recall
|
371 |
+
value: 0.9957627118644068
|
372 |
+
name: Euclidean Recall
|
373 |
+
- type: euclidean_ap
|
374 |
+
value: 0.5484497034083067
|
375 |
+
name: Euclidean Ap
|
376 |
+
- type: max_accuracy
|
377 |
+
value: 0.607421875
|
378 |
+
name: Max Accuracy
|
379 |
+
- type: max_accuracy_threshold
|
380 |
+
value: 719.7518310546875
|
381 |
+
name: Max Accuracy Threshold
|
382 |
+
- type: max_f1
|
383 |
+
value: 0.6303724928366763
|
384 |
+
name: Max F1
|
385 |
+
- type: max_f1_threshold
|
386 |
+
value: 616.7227783203125
|
387 |
+
name: Max F1 Threshold
|
388 |
+
- type: max_precision
|
389 |
+
value: 0.47619047619047616
|
390 |
+
name: Max Precision
|
391 |
+
- type: max_recall
|
392 |
+
value: 0.9957627118644068
|
393 |
+
name: Max Recall
|
394 |
+
- type: max_ap
|
395 |
+
value: 0.5750034744442096
|
396 |
+
name: Max Ap
|
397 |
+
---
|
398 |
+
|
399 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
400 |
+
|
401 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
402 |
+
|
403 |
+
## Model Details
|
404 |
+
|
405 |
+
### Model Description
|
406 |
+
- **Model Type:** Sentence Transformer
|
407 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
408 |
+
- **Maximum Sequence Length:** 512 tokens
|
409 |
+
- **Output Dimensionality:** 768 tokens
|
410 |
+
- **Similarity Function:** Cosine Similarity
|
411 |
+
<!-- - **Training Dataset:** Unknown -->
|
412 |
+
<!-- - **Language:** Unknown -->
|
413 |
+
<!-- - **License:** Unknown -->
|
414 |
+
|
415 |
+
### Model Sources
|
416 |
+
|
417 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
418 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
419 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
420 |
+
|
421 |
+
### Full Model Architecture
|
422 |
+
|
423 |
+
```
|
424 |
+
SentenceTransformer(
|
425 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
426 |
+
(1): AdvancedWeightedPooling(
|
427 |
+
(alpha_dropout_layer): Dropout(p=0.01, inplace=False)
|
428 |
+
(gate_dropout_layer): Dropout(p=0.05, inplace=False)
|
429 |
+
(linear_cls_pj): Linear(in_features=768, out_features=768, bias=True)
|
430 |
+
(linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
|
431 |
+
(linear_mean_pj): Linear(in_features=768, out_features=768, bias=True)
|
432 |
+
(linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
|
433 |
+
(mha): MultiheadAttention(
|
434 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
435 |
+
)
|
436 |
+
(layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
437 |
+
(layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
438 |
+
(layernorm_pjCls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
439 |
+
(layernorm_pjMean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
440 |
+
(layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
441 |
+
)
|
442 |
+
)
|
443 |
+
```
|
444 |
+
|
445 |
+
## Usage
|
446 |
+
|
447 |
+
### Direct Usage (Sentence Transformers)
|
448 |
+
|
449 |
+
First install the Sentence Transformers library:
|
450 |
+
|
451 |
+
```bash
|
452 |
+
pip install -U sentence-transformers
|
453 |
+
```
|
454 |
+
|
455 |
+
Then you can load this model and run inference.
|
456 |
+
```python
|
457 |
+
from sentence_transformers import SentenceTransformer
|
458 |
+
|
459 |
+
# Download from the 🤗 Hub
|
460 |
+
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp")
|
461 |
+
# Run inference
|
462 |
+
sentences = [
|
463 |
+
'What do outdoor plants require to survive?',
|
464 |
+
'a plants require water for survival. If no rain or watering, the plant dies. \n Outdoor plants require rain to survive.',
|
465 |
+
"(Vegan) soups are nutritious. In addition to them being easy to digest, most the time, soups are made from nutrient-dense ingredients like herbs, spices, vegetables, and beans. Because the soup is full of those nutrients AND that it's easy to digest, your body is able to absorb more of those nutrients into your system.",
|
466 |
+
]
|
467 |
+
embeddings = model.encode(sentences)
|
468 |
+
print(embeddings.shape)
|
469 |
+
# [3, 768]
|
470 |
+
|
471 |
+
# Get the similarity scores for the embeddings
|
472 |
+
similarities = model.similarity(embeddings, embeddings)
|
473 |
+
print(similarities.shape)
|
474 |
+
# [3, 3]
|
475 |
+
```
|
476 |
+
|
477 |
+
<!--
|
478 |
+
### Direct Usage (Transformers)
|
479 |
+
|
480 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
481 |
+
|
482 |
+
</details>
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
### Downstream Usage (Sentence Transformers)
|
487 |
+
|
488 |
+
You can finetune this model on your own dataset.
|
489 |
+
|
490 |
+
<details><summary>Click to expand</summary>
|
491 |
+
|
492 |
+
</details>
|
493 |
+
-->
|
494 |
+
|
495 |
+
<!--
|
496 |
+
### Out-of-Scope Use
|
497 |
+
|
498 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
499 |
+
-->
|
500 |
+
|
501 |
+
## Evaluation
|
502 |
+
|
503 |
+
### Metrics
|
504 |
+
|
505 |
+
#### Semantic Similarity
|
506 |
+
* Dataset: `sts-test`
|
507 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
508 |
+
|
509 |
+
| Metric | Value |
|
510 |
+
|:--------------------|:-----------|
|
511 |
+
| pearson_cosine | 0.1201 |
|
512 |
+
| **spearman_cosine** | **0.1806** |
|
513 |
+
| pearson_manhattan | 0.1849 |
|
514 |
+
| spearman_manhattan | 0.2114 |
|
515 |
+
| pearson_euclidean | 0.1553 |
|
516 |
+
| spearman_euclidean | 0.1806 |
|
517 |
+
| pearson_dot | 0.12 |
|
518 |
+
| spearman_dot | 0.1804 |
|
519 |
+
| pearson_max | 0.1849 |
|
520 |
+
| spearman_max | 0.2114 |
|
521 |
+
|
522 |
+
#### Binary Classification
|
523 |
+
* Dataset: `allNLI-dev`
|
524 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
525 |
+
|
526 |
+
| Metric | Value |
|
527 |
+
|:-----------------------------|:-----------|
|
528 |
+
| cosine_accuracy | 0.668 |
|
529 |
+
| cosine_accuracy_threshold | 0.9722 |
|
530 |
+
| cosine_f1 | 0.5029 |
|
531 |
+
| cosine_f1_threshold | 0.8215 |
|
532 |
+
| cosine_precision | 0.3366 |
|
533 |
+
| cosine_recall | 0.9942 |
|
534 |
+
| cosine_ap | 0.3858 |
|
535 |
+
| dot_accuracy | 0.668 |
|
536 |
+
| dot_accuracy_threshold | 746.9148 |
|
537 |
+
| dot_f1 | 0.5029 |
|
538 |
+
| dot_f1_threshold | 631.1389 |
|
539 |
+
| dot_precision | 0.3366 |
|
540 |
+
| dot_recall | 0.9942 |
|
541 |
+
| dot_ap | 0.3857 |
|
542 |
+
| manhattan_accuracy | 0.666 |
|
543 |
+
| manhattan_accuracy_threshold | 95.2453 |
|
544 |
+
| manhattan_f1 | 0.5045 |
|
545 |
+
| manhattan_f1_threshold | 254.9734 |
|
546 |
+
| manhattan_precision | 0.3415 |
|
547 |
+
| manhattan_recall | 0.9653 |
|
548 |
+
| manhattan_ap | 0.3919 |
|
549 |
+
| euclidean_accuracy | 0.668 |
|
550 |
+
| euclidean_accuracy_threshold | 6.5414 |
|
551 |
+
| euclidean_f1 | 0.5029 |
|
552 |
+
| euclidean_f1_threshold | 16.559 |
|
553 |
+
| euclidean_precision | 0.3366 |
|
554 |
+
| euclidean_recall | 0.9942 |
|
555 |
+
| euclidean_ap | 0.3858 |
|
556 |
+
| max_accuracy | 0.668 |
|
557 |
+
| max_accuracy_threshold | 746.9148 |
|
558 |
+
| max_f1 | 0.5045 |
|
559 |
+
| max_f1_threshold | 631.1389 |
|
560 |
+
| max_precision | 0.3415 |
|
561 |
+
| max_recall | 0.9942 |
|
562 |
+
| **max_ap** | **0.3919** |
|
563 |
+
|
564 |
+
#### Binary Classification
|
565 |
+
* Dataset: `Qnli-dev`
|
566 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
567 |
+
|
568 |
+
| Metric | Value |
|
569 |
+
|:-----------------------------|:----------|
|
570 |
+
| cosine_accuracy | 0.582 |
|
571 |
+
| cosine_accuracy_threshold | 0.9368 |
|
572 |
+
| cosine_f1 | 0.63 |
|
573 |
+
| cosine_f1_threshold | 0.8027 |
|
574 |
+
| cosine_precision | 0.4608 |
|
575 |
+
| cosine_recall | 0.9958 |
|
576 |
+
| cosine_ap | 0.5484 |
|
577 |
+
| dot_accuracy | 0.582 |
|
578 |
+
| dot_accuracy_threshold | 719.7518 |
|
579 |
+
| dot_f1 | 0.63 |
|
580 |
+
| dot_f1_threshold | 616.7228 |
|
581 |
+
| dot_precision | 0.4608 |
|
582 |
+
| dot_recall | 0.9958 |
|
583 |
+
| dot_ap | 0.5485 |
|
584 |
+
| manhattan_accuracy | 0.6074 |
|
585 |
+
| manhattan_accuracy_threshold | 182.1275 |
|
586 |
+
| manhattan_f1 | 0.6304 |
|
587 |
+
| manhattan_f1_threshold | 230.0565 |
|
588 |
+
| manhattan_precision | 0.4762 |
|
589 |
+
| manhattan_recall | 0.9322 |
|
590 |
+
| manhattan_ap | 0.575 |
|
591 |
+
| euclidean_accuracy | 0.582 |
|
592 |
+
| euclidean_accuracy_threshold | 9.8539 |
|
593 |
+
| euclidean_f1 | 0.63 |
|
594 |
+
| euclidean_f1_threshold | 17.4095 |
|
595 |
+
| euclidean_precision | 0.4608 |
|
596 |
+
| euclidean_recall | 0.9958 |
|
597 |
+
| euclidean_ap | 0.5484 |
|
598 |
+
| max_accuracy | 0.6074 |
|
599 |
+
| max_accuracy_threshold | 719.7518 |
|
600 |
+
| max_f1 | 0.6304 |
|
601 |
+
| max_f1_threshold | 616.7228 |
|
602 |
+
| max_precision | 0.4762 |
|
603 |
+
| max_recall | 0.9958 |
|
604 |
+
| **max_ap** | **0.575** |
|
605 |
+
|
606 |
+
<!--
|
607 |
+
## Bias, Risks and Limitations
|
608 |
+
|
609 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
610 |
+
-->
|
611 |
+
|
612 |
+
<!--
|
613 |
+
### Recommendations
|
614 |
+
|
615 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
616 |
+
-->
|
617 |
+
|
618 |
+
## Training Details
|
619 |
+
|
620 |
+
### Training Dataset
|
621 |
+
|
622 |
+
#### Unnamed Dataset
|
623 |
+
|
624 |
+
|
625 |
+
* Size: 32,500 training samples
|
626 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
627 |
+
* Approximate statistics based on the first 1000 samples:
|
628 |
+
| | sentence1 | sentence2 |
|
629 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
630 |
+
| type | string | string |
|
631 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 29.43 tokens</li><li>max: 400 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 57.02 tokens</li><li>max: 389 tokens</li></ul> |
|
632 |
+
* Samples:
|
633 |
+
| sentence1 | sentence2 |
|
634 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
635 |
+
| <code>What is the chemical symbol for Silver?</code> | <code>Chemical Elements.com - Silver (Ag) Bentor, Yinon. Chemical Element.com - Silver. <http://www.chemicalelements.com/elements/ag.html>. For more information about citing online sources, please visit the MLA's Website . This page was created by Yinon Bentor. Use of this web site is restricted by this site's license agreement . Copyright © 1996-2012 Yinon Bentor. All Rights Reserved.</code> |
|
636 |
+
| <code>e.	in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently.</code> | <code>Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas</code> |
|
637 |
+
| <code>Keanu Neal was born in 1995 .</code> | <code>Keanu Neal ( born July 26 , 1995 ) is an American football safety for the Atlanta Falcons of the National Football League ( NFL ) .</code> |
|
638 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
639 |
+
```json
|
640 |
+
{'guide': SentenceTransformer(
|
641 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
642 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
643 |
+
(2): Normalize()
|
644 |
+
), 'temperature': 0.025}
|
645 |
+
```
|
646 |
+
|
647 |
+
### Evaluation Dataset
|
648 |
+
|
649 |
+
#### Unnamed Dataset
|
650 |
+
|
651 |
+
|
652 |
+
* Size: 1,664 evaluation samples
|
653 |
+
* Columns: <code>sentence1</code> and <code>sentence2</code>
|
654 |
+
* Approximate statistics based on the first 1000 samples:
|
655 |
+
| | sentence1 | sentence2 |
|
656 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
657 |
+
| type | string | string |
|
658 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 28.9 tokens</li><li>max: 348 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 57.31 tokens</li><li>max: 450 tokens</li></ul> |
|
659 |
+
* Samples:
|
660 |
+
| sentence1 | sentence2 |
|
661 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
662 |
+
| <code>Gene expression is regulated primarily at the what level?</code> | <code>Gene expression is regulated primarily at the transcriptional level.</code> |
|
663 |
+
| <code>Diffusion Diffusion is a process where atoms or molecules move from areas of high concentration to areas of low concentration.</code> | <code>Diffusion is the process in which a substance naturally moves from an area of higher to lower concentration.</code> |
|
664 |
+
| <code>In which James Bond film did Sean Connery wear the Bell Rocket Belt (Jet Pack)?</code> | <code>Jet Pack - James Bond Gadgets 125lbs Summary James Bond used the Jetpack in 1965's Thunderball, to escape from gunmen after killing a SPECTRE agent. The Jetpack In the 1965 movie Thunderball, James Bond (Sean Connery) uses Q's Jetpack to escape from two gunmen after killing Jacques Bouvar, SPECTRE Agent No. 6. It was also used in the Thunderball movie posters, being the "Look Up" part of the "Look Up! Look Down! Look Out!" tagline. The Jetpack returned in the 2002 movie Die Another Day, in the Q scene that showcased many other classic gadgets. The Jetpack is a very popular Bond gadget and is a favorite among many fans due to its originality and uniqueness. The Bell Rocket Belt The Jetpack is actually a Bell Rocket Belt, a fully functional rocket pack device. It was designed for use in the army, but was rejected because of its short flying time of 21-22 seconds. Powered by hydrogen peroxide, it could fly about 250m and reach a maximum altitude of 18m, going 55km/h. Despite its impracticality in the real world, the Jetpack made a spectacular debut in Thunderball. Although Sean Connery is seen in the takeoff and landings, the main flight was piloted by Gordon Yeager and Bill Suitor.</code> |
|
665 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
666 |
+
```json
|
667 |
+
{'guide': SentenceTransformer(
|
668 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
669 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
670 |
+
(2): Normalize()
|
671 |
+
), 'temperature': 0.025}
|
672 |
+
```
|
673 |
+
|
674 |
+
### Training Hyperparameters
|
675 |
+
#### Non-Default Hyperparameters
|
676 |
+
|
677 |
+
- `eval_strategy`: steps
|
678 |
+
- `per_device_train_batch_size`: 32
|
679 |
+
- `per_device_eval_batch_size`: 256
|
680 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
681 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
682 |
+
- `warmup_ratio`: 0.33
|
683 |
+
- `save_safetensors`: False
|
684 |
+
- `fp16`: True
|
685 |
+
- `push_to_hub`: True
|
686 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp
|
687 |
+
- `hub_strategy`: all_checkpoints
|
688 |
+
- `batch_sampler`: no_duplicates
|
689 |
+
|
690 |
+
#### All Hyperparameters
|
691 |
+
<details><summary>Click to expand</summary>
|
692 |
+
|
693 |
+
- `overwrite_output_dir`: False
|
694 |
+
- `do_predict`: False
|
695 |
+
- `eval_strategy`: steps
|
696 |
+
- `prediction_loss_only`: True
|
697 |
+
- `per_device_train_batch_size`: 32
|
698 |
+
- `per_device_eval_batch_size`: 256
|
699 |
+
- `per_gpu_train_batch_size`: None
|
700 |
+
- `per_gpu_eval_batch_size`: None
|
701 |
+
- `gradient_accumulation_steps`: 1
|
702 |
+
- `eval_accumulation_steps`: None
|
703 |
+
- `torch_empty_cache_steps`: None
|
704 |
+
- `learning_rate`: 5e-05
|
705 |
+
- `weight_decay`: 0.0
|
706 |
+
- `adam_beta1`: 0.9
|
707 |
+
- `adam_beta2`: 0.999
|
708 |
+
- `adam_epsilon`: 1e-08
|
709 |
+
- `max_grad_norm`: 1.0
|
710 |
+
- `num_train_epochs`: 3
|
711 |
+
- `max_steps`: -1
|
712 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
713 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
|
714 |
+
- `warmup_ratio`: 0.33
|
715 |
+
- `warmup_steps`: 0
|
716 |
+
- `log_level`: passive
|
717 |
+
- `log_level_replica`: warning
|
718 |
+
- `log_on_each_node`: True
|
719 |
+
- `logging_nan_inf_filter`: True
|
720 |
+
- `save_safetensors`: False
|
721 |
+
- `save_on_each_node`: False
|
722 |
+
- `save_only_model`: False
|
723 |
+
- `restore_callback_states_from_checkpoint`: False
|
724 |
+
- `no_cuda`: False
|
725 |
+
- `use_cpu`: False
|
726 |
+
- `use_mps_device`: False
|
727 |
+
- `seed`: 42
|
728 |
+
- `data_seed`: None
|
729 |
+
- `jit_mode_eval`: False
|
730 |
+
- `use_ipex`: False
|
731 |
+
- `bf16`: False
|
732 |
+
- `fp16`: True
|
733 |
+
- `fp16_opt_level`: O1
|
734 |
+
- `half_precision_backend`: auto
|
735 |
+
- `bf16_full_eval`: False
|
736 |
+
- `fp16_full_eval`: False
|
737 |
+
- `tf32`: None
|
738 |
+
- `local_rank`: 0
|
739 |
+
- `ddp_backend`: None
|
740 |
+
- `tpu_num_cores`: None
|
741 |
+
- `tpu_metrics_debug`: False
|
742 |
+
- `debug`: []
|
743 |
+
- `dataloader_drop_last`: False
|
744 |
+
- `dataloader_num_workers`: 0
|
745 |
+
- `dataloader_prefetch_factor`: None
|
746 |
+
- `past_index`: -1
|
747 |
+
- `disable_tqdm`: False
|
748 |
+
- `remove_unused_columns`: True
|
749 |
+
- `label_names`: None
|
750 |
+
- `load_best_model_at_end`: False
|
751 |
+
- `ignore_data_skip`: False
|
752 |
+
- `fsdp`: []
|
753 |
+
- `fsdp_min_num_params`: 0
|
754 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
755 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
756 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
757 |
+
- `deepspeed`: None
|
758 |
+
- `label_smoothing_factor`: 0.0
|
759 |
+
- `optim`: adamw_torch
|
760 |
+
- `optim_args`: None
|
761 |
+
- `adafactor`: False
|
762 |
+
- `group_by_length`: False
|
763 |
+
- `length_column_name`: length
|
764 |
+
- `ddp_find_unused_parameters`: None
|
765 |
+
- `ddp_bucket_cap_mb`: None
|
766 |
+
- `ddp_broadcast_buffers`: False
|
767 |
+
- `dataloader_pin_memory`: True
|
768 |
+
- `dataloader_persistent_workers`: False
|
769 |
+
- `skip_memory_metrics`: True
|
770 |
+
- `use_legacy_prediction_loop`: False
|
771 |
+
- `push_to_hub`: True
|
772 |
+
- `resume_from_checkpoint`: None
|
773 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp
|
774 |
+
- `hub_strategy`: all_checkpoints
|
775 |
+
- `hub_private_repo`: False
|
776 |
+
- `hub_always_push`: False
|
777 |
+
- `gradient_checkpointing`: False
|
778 |
+
- `gradient_checkpointing_kwargs`: None
|
779 |
+
- `include_inputs_for_metrics`: False
|
780 |
+
- `eval_do_concat_batches`: True
|
781 |
+
- `fp16_backend`: auto
|
782 |
+
- `push_to_hub_model_id`: None
|
783 |
+
- `push_to_hub_organization`: None
|
784 |
+
- `mp_parameters`:
|
785 |
+
- `auto_find_batch_size`: False
|
786 |
+
- `full_determinism`: False
|
787 |
+
- `torchdynamo`: None
|
788 |
+
- `ray_scope`: last
|
789 |
+
- `ddp_timeout`: 1800
|
790 |
+
- `torch_compile`: False
|
791 |
+
- `torch_compile_backend`: None
|
792 |
+
- `torch_compile_mode`: None
|
793 |
+
- `dispatch_batches`: None
|
794 |
+
- `split_batches`: None
|
795 |
+
- `include_tokens_per_second`: False
|
796 |
+
- `include_num_input_tokens_seen`: False
|
797 |
+
- `neftune_noise_alpha`: None
|
798 |
+
- `optim_target_modules`: None
|
799 |
+
- `batch_eval_metrics`: False
|
800 |
+
- `eval_on_start`: False
|
801 |
+
- `eval_use_gather_object`: False
|
802 |
+
- `batch_sampler`: no_duplicates
|
803 |
+
- `multi_dataset_batch_sampler`: proportional
|
804 |
+
|
805 |
+
</details>
|
806 |
+
|
807 |
+
### Training Logs
|
808 |
+
<details><summary>Click to expand</summary>
|
809 |
+
|
810 |
+
| Epoch | Step | Training Loss | Validation Loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|
811 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:-----------------:|:---------------:|
|
812 |
+
| 0.0010 | 1 | 18.7427 | - | - | - | - |
|
813 |
+
| 0.0020 | 2 | 11.6434 | - | - | - | - |
|
814 |
+
| 0.0030 | 3 | 7.4859 | - | - | - | - |
|
815 |
+
| 0.0039 | 4 | 7.3779 | - | - | - | - |
|
816 |
+
| 0.0049 | 5 | 17.5878 | - | - | - | - |
|
817 |
+
| 0.0059 | 6 | 8.4984 | - | - | - | - |
|
818 |
+
| 0.0069 | 7 | 8.375 | - | - | - | - |
|
819 |
+
| 0.0079 | 8 | 7.3241 | - | - | - | - |
|
820 |
+
| 0.0089 | 9 | 10.3081 | - | - | - | - |
|
821 |
+
| 0.0098 | 10 | 8.5363 | - | - | - | - |
|
822 |
+
| 0.0108 | 11 | 17.2241 | - | - | - | - |
|
823 |
+
| 0.0118 | 12 | 7.575 | - | - | - | - |
|
824 |
+
| 0.0128 | 13 | 9.1905 | - | - | - | - |
|
825 |
+
| 0.0138 | 14 | 11.7727 | - | - | - | - |
|
826 |
+
| 0.0148 | 15 | 9.5827 | - | - | - | - |
|
827 |
+
| 0.0157 | 16 | 7.4432 | - | - | - | - |
|
828 |
+
| 0.0167 | 17 | 7.1573 | - | - | - | - |
|
829 |
+
| 0.0177 | 18 | 19.8016 | - | - | - | - |
|
830 |
+
| 0.0187 | 19 | 19.5118 | - | - | - | - |
|
831 |
+
| 0.0197 | 20 | 7.9062 | - | - | - | - |
|
832 |
+
| 0.0207 | 21 | 8.6791 | - | - | - | - |
|
833 |
+
| 0.0217 | 22 | 7.7318 | - | - | - | - |
|
834 |
+
| 0.0226 | 23 | 7.9319 | - | - | - | - |
|
835 |
+
| 0.0236 | 24 | 7.192 | - | - | - | - |
|
836 |
+
| 0.0246 | 25 | 15.5799 | - | - | - | - |
|
837 |
+
| 0.0256 | 26 | 9.7859 | - | - | - | - |
|
838 |
+
| 0.0266 | 27 | 9.9259 | - | - | - | - |
|
839 |
+
| 0.0276 | 28 | 6.3076 | - | - | - | - |
|
840 |
+
| 0.0285 | 29 | 7.4471 | - | - | - | - |
|
841 |
+
| 0.0295 | 30 | 7.1246 | - | - | - | - |
|
842 |
+
| 0.0305 | 31 | 6.5505 | - | - | - | - |
|
843 |
+
| 0.0315 | 32 | 18.5194 | - | - | - | - |
|
844 |
+
| 0.0325 | 33 | 7.0747 | - | - | - | - |
|
845 |
+
| 0.0335 | 34 | 14.9456 | - | - | - | - |
|
846 |
+
| 0.0344 | 35 | 6.608 | - | - | - | - |
|
847 |
+
| 0.0354 | 36 | 8.4672 | - | - | - | - |
|
848 |
+
| 0.0364 | 37 | 6.8853 | - | - | - | - |
|
849 |
+
| 0.0374 | 38 | 13.6063 | - | - | - | - |
|
850 |
+
| 0.0384 | 39 | 7.2625 | - | - | - | - |
|
851 |
+
| 0.0394 | 40 | 6.2234 | - | - | - | - |
|
852 |
+
| 0.0404 | 41 | 14.9675 | - | - | - | - |
|
853 |
+
| 0.0413 | 42 | 6.6038 | - | - | - | - |
|
854 |
+
| 0.0423 | 43 | 13.1173 | - | - | - | - |
|
855 |
+
| 0.0433 | 44 | 16.6992 | - | - | - | - |
|
856 |
+
| 0.0443 | 45 | 6.4828 | - | - | - | - |
|
857 |
+
| 0.0453 | 46 | 5.9815 | - | - | - | - |
|
858 |
+
| 0.0463 | 47 | 6.1738 | - | - | - | - |
|
859 |
+
| 0.0472 | 48 | 7.134 | - | - | - | - |
|
860 |
+
| 0.0482 | 49 | 9.3933 | - | - | - | - |
|
861 |
+
| 0.0492 | 50 | 10.8085 | - | - | - | - |
|
862 |
+
| 0.0502 | 51 | 11.4172 | - | - | - | - |
|
863 |
+
| 0.0512 | 52 | 7.3397 | - | - | - | - |
|
864 |
+
| 0.0522 | 53 | 5.8851 | - | - | - | - |
|
865 |
+
| 0.0531 | 54 | 6.8105 | - | - | - | - |
|
866 |
+
| 0.0541 | 55 | 5.3637 | - | - | - | - |
|
867 |
+
| 0.0551 | 56 | 6.2628 | - | - | - | - |
|
868 |
+
| 0.0561 | 57 | 6.0039 | - | - | - | - |
|
869 |
+
| 0.0571 | 58 | 7.5859 | - | - | - | - |
|
870 |
+
| 0.0581 | 59 | 6.0802 | - | - | - | - |
|
871 |
+
| 0.0591 | 60 | 5.5822 | - | - | - | - |
|
872 |
+
| 0.0600 | 61 | 5.8773 | - | - | - | - |
|
873 |
+
| 0.0610 | 62 | 6.0814 | - | - | - | - |
|
874 |
+
| 0.0620 | 63 | 5.4483 | - | - | - | - |
|
875 |
+
| 0.0630 | 64 | 10.2506 | - | - | - | - |
|
876 |
+
| 0.0640 | 65 | 10.5976 | - | - | - | - |
|
877 |
+
| 0.0650 | 66 | 6.9942 | - | - | - | - |
|
878 |
+
| 0.0659 | 67 | 5.4813 | - | - | - | - |
|
879 |
+
| 0.0669 | 68 | 7.045 | - | - | - | - |
|
880 |
+
| 0.0679 | 69 | 5.8549 | - | - | - | - |
|
881 |
+
| 0.0689 | 70 | 8.8514 | - | - | - | - |
|
882 |
+
| 0.0699 | 71 | 5.2557 | - | - | - | - |
|
883 |
+
| 0.0709 | 72 | 5.1181 | - | - | - | - |
|
884 |
+
| 0.0719 | 73 | 5.5331 | - | - | - | - |
|
885 |
+
| 0.0728 | 74 | 5.5944 | - | - | - | - |
|
886 |
+
| 0.0738 | 75 | 4.6332 | - | - | - | - |
|
887 |
+
| 0.0748 | 76 | 4.9532 | - | - | - | - |
|
888 |
+
| 0.0758 | 77 | 5.055 | - | - | - | - |
|
889 |
+
| 0.0768 | 78 | 4.5005 | - | - | - | - |
|
890 |
+
| 0.0778 | 79 | 5.1997 | - | - | - | - |
|
891 |
+
| 0.0787 | 80 | 5.1479 | - | - | - | - |
|
892 |
+
| 0.0797 | 81 | 5.1777 | - | - | - | - |
|
893 |
+
| 0.0807 | 82 | 5.5565 | - | - | - | - |
|
894 |
+
| 0.0817 | 83 | 4.6999 | - | - | - | - |
|
895 |
+
| 0.0827 | 84 | 5.0681 | - | - | - | - |
|
896 |
+
| 0.0837 | 85 | 5.2208 | - | - | - | - |
|
897 |
+
| 0.0846 | 86 | 4.56 | - | - | - | - |
|
898 |
+
| 0.0856 | 87 | 4.6793 | - | - | - | - |
|
899 |
+
| 0.0866 | 88 | 4.4611 | - | - | - | - |
|
900 |
+
| 0.0876 | 89 | 9.623 | - | - | - | - |
|
901 |
+
| 0.0886 | 90 | 5.0316 | - | - | - | - |
|
902 |
+
| 0.0896 | 91 | 4.1771 | - | - | - | - |
|
903 |
+
| 0.0906 | 92 | 4.9652 | - | - | - | - |
|
904 |
+
| 0.0915 | 93 | 8.7432 | - | - | - | - |
|
905 |
+
| 0.0925 | 94 | 4.6234 | - | - | - | - |
|
906 |
+
| 0.0935 | 95 | 4.4016 | - | - | - | - |
|
907 |
+
| 0.0945 | 96 | 4.9903 | - | - | - | - |
|
908 |
+
| 0.0955 | 97 | 4.5606 | - | - | - | - |
|
909 |
+
| 0.0965 | 98 | 4.9534 | - | - | - | - |
|
910 |
+
| 0.0974 | 99 | 8.1838 | - | - | - | - |
|
911 |
+
| 0.0984 | 100 | 4.9736 | - | - | - | - |
|
912 |
+
| 0.0994 | 101 | 4.4733 | - | - | - | - |
|
913 |
+
| 0.1004 | 102 | 4.9725 | - | - | - | - |
|
914 |
+
| 0.1014 | 103 | 4.5861 | - | - | - | - |
|
915 |
+
| 0.1024 | 104 | 7.7634 | - | - | - | - |
|
916 |
+
| 0.1033 | 105 | 4.9915 | - | - | - | - |
|
917 |
+
| 0.1043 | 106 | 5.1391 | - | - | - | - |
|
918 |
+
| 0.1053 | 107 | 5.0157 | - | - | - | - |
|
919 |
+
| 0.1063 | 108 | 4.0982 | - | - | - | - |
|
920 |
+
| 0.1073 | 109 | 4.2178 | - | - | - | - |
|
921 |
+
| 0.1083 | 110 | 4.6193 | - | - | - | - |
|
922 |
+
| 0.1093 | 111 | 4.7638 | - | - | - | - |
|
923 |
+
| 0.1102 | 112 | 4.1207 | - | - | - | - |
|
924 |
+
| 0.1112 | 113 | 5.2034 | - | - | - | - |
|
925 |
+
| 0.1122 | 114 | 5.0693 | - | - | - | - |
|
926 |
+
| 0.1132 | 115 | 4.7895 | - | - | - | - |
|
927 |
+
| 0.1142 | 116 | 4.9486 | - | - | - | - |
|
928 |
+
| 0.1152 | 117 | 4.6552 | - | - | - | - |
|
929 |
+
| 0.1161 | 118 | 4.4555 | - | - | - | - |
|
930 |
+
| 0.1171 | 119 | 4.8977 | - | - | - | - |
|
931 |
+
| 0.1181 | 120 | 7.6836 | - | - | - | - |
|
932 |
+
| 0.1191 | 121 | 4.8106 | - | - | - | - |
|
933 |
+
| 0.1201 | 122 | 4.9958 | - | - | - | - |
|
934 |
+
| 0.1211 | 123 | 4.4585 | - | - | - | - |
|
935 |
+
| 0.1220 | 124 | 7.5559 | - | - | - | - |
|
936 |
+
| 0.1230 | 125 | 4.2636 | - | - | - | - |
|
937 |
+
| 0.1240 | 126 | 4.0436 | - | - | - | - |
|
938 |
+
| 0.125 | 127 | 4.7416 | - | - | - | - |
|
939 |
+
| 0.1260 | 128 | 4.2215 | - | - | - | - |
|
940 |
+
| 0.1270 | 129 | 6.3561 | - | - | - | - |
|
941 |
+
| 0.1280 | 130 | 6.2299 | - | - | - | - |
|
942 |
+
| 0.1289 | 131 | 4.3492 | - | - | - | - |
|
943 |
+
| 0.1299 | 132 | 4.0216 | - | - | - | - |
|
944 |
+
| 0.1309 | 133 | 6.963 | - | - | - | - |
|
945 |
+
| 0.1319 | 134 | 3.9474 | - | - | - | - |
|
946 |
+
| 0.1329 | 135 | 4.3437 | - | - | - | - |
|
947 |
+
| 0.1339 | 136 | 3.6267 | - | - | - | - |
|
948 |
+
| 0.1348 | 137 | 3.9896 | - | - | - | - |
|
949 |
+
| 0.1358 | 138 | 4.8156 | - | - | - | - |
|
950 |
+
| 0.1368 | 139 | 4.9751 | - | - | - | - |
|
951 |
+
| 0.1378 | 140 | 4.4144 | - | - | - | - |
|
952 |
+
| 0.1388 | 141 | 4.7213 | - | - | - | - |
|
953 |
+
| 0.1398 | 142 | 6.6081 | - | - | - | - |
|
954 |
+
| 0.1407 | 143 | 4.2929 | - | - | - | - |
|
955 |
+
| 0.1417 | 144 | 4.2537 | - | - | - | - |
|
956 |
+
| 0.1427 | 145 | 4.0647 | - | - | - | - |
|
957 |
+
| 0.1437 | 146 | 3.937 | - | - | - | - |
|
958 |
+
| 0.1447 | 147 | 5.6582 | - | - | - | - |
|
959 |
+
| 0.1457 | 148 | 4.2648 | - | - | - | - |
|
960 |
+
| 0.1467 | 149 | 4.4429 | - | - | - | - |
|
961 |
+
| 0.1476 | 150 | 3.6197 | - | - | - | - |
|
962 |
+
| 0.1486 | 151 | 3.7953 | - | - | - | - |
|
963 |
+
| 0.1496 | 152 | 3.8175 | - | - | - | - |
|
964 |
+
| 0.1506 | 153 | 4.5137 | 3.3210 | 0.1806 | 0.3919 | 0.5750 |
|
965 |
+
| 0.1516 | 154 | 4.3528 | - | - | - | - |
|
966 |
+
| 0.1526 | 155 | 3.6573 | - | - | - | - |
|
967 |
+
| 0.1535 | 156 | 3.5248 | - | - | - | - |
|
968 |
+
| 0.1545 | 157 | 3.9275 | - | - | - | - |
|
969 |
+
| 0.1555 | 158 | 7.1868 | - | - | - | - |
|
970 |
+
| 0.1565 | 159 | 3.6294 | - | - | - | - |
|
971 |
+
| 0.1575 | 160 | 3.6886 | - | - | - | - |
|
972 |
+
| 0.1585 | 161 | 3.1873 | - | - | - | - |
|
973 |
+
| 0.1594 | 162 | 6.1951 | - | - | - | - |
|
974 |
+
| 0.1604 | 163 | 3.9747 | - | - | - | - |
|
975 |
+
| 0.1614 | 164 | 7.004 | - | - | - | - |
|
976 |
+
| 0.1624 | 165 | 4.3221 | - | - | - | - |
|
977 |
+
| 0.1634 | 166 | 3.5963 | - | - | - | - |
|
978 |
+
| 0.1644 | 167 | 3.1988 | - | - | - | - |
|
979 |
+
| 0.1654 | 168 | 3.8236 | - | - | - | - |
|
980 |
+
| 0.1663 | 169 | 3.5063 | - | - | - | - |
|
981 |
+
| 0.1673 | 170 | 5.9843 | - | - | - | - |
|
982 |
+
| 0.1683 | 171 | 5.884 | - | - | - | - |
|
983 |
+
| 0.1693 | 172 | 4.1317 | - | - | - | - |
|
984 |
+
| 0.1703 | 173 | 3.9255 | - | - | - | - |
|
985 |
+
| 0.1713 | 174 | 4.1121 | - | - | - | - |
|
986 |
+
| 0.1722 | 175 | 3.7748 | - | - | - | - |
|
987 |
+
| 0.1732 | 176 | 5.1602 | - | - | - | - |
|
988 |
+
| 0.1742 | 177 | 4.8807 | - | - | - | - |
|
989 |
+
| 0.1752 | 178 | 3.4643 | - | - | - | - |
|
990 |
+
| 0.1762 | 179 | 3.4937 | - | - | - | - |
|
991 |
+
| 0.1772 | 180 | 5.2731 | - | - | - | - |
|
992 |
+
| 0.1781 | 181 | 4.6416 | - | - | - | - |
|
993 |
+
| 0.1791 | 182 | 3.5226 | - | - | - | - |
|
994 |
+
| 0.1801 | 183 | 4.7794 | - | - | - | - |
|
995 |
+
| 0.1811 | 184 | 3.8504 | - | - | - | - |
|
996 |
+
| 0.1821 | 185 | 3.5391 | - | - | - | - |
|
997 |
+
| 0.1831 | 186 | 4.0291 | - | - | - | - |
|
998 |
+
| 0.1841 | 187 | 3.5606 | - | - | - | - |
|
999 |
+
| 0.1850 | 188 | 3.8957 | - | - | - | - |
|
1000 |
+
| 0.1860 | 189 | 4.3657 | - | - | - | - |
|
1001 |
+
| 0.1870 | 190 | 5.0173 | - | - | - | - |
|
1002 |
+
| 0.1880 | 191 | 4.3915 | - | - | - | - |
|
1003 |
+
| 0.1890 | 192 | 3.4613 | - | - | - | - |
|
1004 |
+
| 0.1900 | 193 | 3.2005 | - | - | - | - |
|
1005 |
+
| 0.1909 | 194 | 3.3986 | - | - | - | - |
|
1006 |
+
| 0.1919 | 195 | 3.7937 | - | - | - | - |
|
1007 |
+
| 0.1929 | 196 | 3.8981 | - | - | - | - |
|
1008 |
+
| 0.1939 | 197 | 3.7051 | - | - | - | - |
|
1009 |
+
| 0.1949 | 198 | 3.8028 | - | - | - | - |
|
1010 |
+
| 0.1959 | 199 | 3.3294 | - | - | - | - |
|
1011 |
+
| 0.1969 | 200 | 4.1252 | - | - | - | - |
|
1012 |
+
| 0.1978 | 201 | 4.2564 | - | - | - | - |
|
1013 |
+
| 0.1988 | 202 | 3.8258 | - | - | - | - |
|
1014 |
+
| 0.1998 | 203 | 3.1025 | - | - | - | - |
|
1015 |
+
| 0.2008 | 204 | 3.5038 | - | - | - | - |
|
1016 |
+
| 0.2018 | 205 | 3.6021 | - | - | - | - |
|
1017 |
+
| 0.2028 | 206 | 3.7637 | - | - | - | - |
|
1018 |
+
| 0.2037 | 207 | 3.2563 | - | - | - | - |
|
1019 |
+
| 0.2047 | 208 | 3.9323 | - | - | - | - |
|
1020 |
+
| 0.2057 | 209 | 3.489 | - | - | - | - |
|
1021 |
+
| 0.2067 | 210 | 3.6549 | - | - | - | - |
|
1022 |
+
| 0.2077 | 211 | 3.1609 | - | - | - | - |
|
1023 |
+
| 0.2087 | 212 | 3.2467 | - | - | - | - |
|
1024 |
+
| 0.2096 | 213 | 3.4514 | - | - | - | - |
|
1025 |
+
| 0.2106 | 214 | 3.4945 | - | - | - | - |
|
1026 |
+
| 0.2116 | 215 | 3.5932 | - | - | - | - |
|
1027 |
+
| 0.2126 | 216 | 3.2289 | - | - | - | - |
|
1028 |
+
| 0.2136 | 217 | 3.3279 | - | - | - | - |
|
1029 |
+
| 0.2146 | 218 | 3.8141 | - | - | - | - |
|
1030 |
+
| 0.2156 | 219 | 3.1171 | - | - | - | - |
|
1031 |
+
| 0.2165 | 220 | 3.6287 | - | - | - | - |
|
1032 |
+
| 0.2175 | 221 | 3.8517 | - | - | - | - |
|
1033 |
+
| 0.2185 | 222 | 3.3836 | - | - | - | - |
|
1034 |
+
| 0.2195 | 223 | 3.425 | - | - | - | - |
|
1035 |
+
| 0.2205 | 224 | 3.6246 | - | - | - | - |
|
1036 |
+
| 0.2215 | 225 | 3.5682 | - | - | - | - |
|
1037 |
+
| 0.2224 | 226 | 3.3034 | - | - | - | - |
|
1038 |
+
| 0.2234 | 227 | 3.9251 | - | - | - | - |
|
1039 |
+
| 0.2244 | 228 | 3.146 | - | - | - | - |
|
1040 |
+
| 0.2254 | 229 | 3.8859 | - | - | - | - |
|
1041 |
+
| 0.2264 | 230 | 3.2977 | - | - | - | - |
|
1042 |
+
| 0.2274 | 231 | 3.2664 | - | - | - | - |
|
1043 |
+
| 0.2283 | 232 | 3.1275 | - | - | - | - |
|
1044 |
+
| 0.2293 | 233 | 3.2408 | - | - | - | - |
|
1045 |
+
| 0.2303 | 234 | 2.907 | - | - | - | - |
|
1046 |
+
| 0.2313 | 235 | 2.9178 | - | - | - | - |
|
1047 |
+
| 0.2323 | 236 | 3.324 | - | - | - | - |
|
1048 |
+
| 0.2333 | 237 | 2.9172 | - | - | - | - |
|
1049 |
+
| 0.2343 | 238 | 3.4324 | - | - | - | - |
|
1050 |
+
| 0.2352 | 239 | 4.0563 | - | - | - | - |
|
1051 |
+
| 0.2362 | 240 | 2.8736 | - | - | - | - |
|
1052 |
+
| 0.2372 | 241 | 4.7174 | - | - | - | - |
|
1053 |
+
| 0.2382 | 242 | 3.2025 | - | - | - | - |
|
1054 |
+
| 0.2392 | 243 | 2.7835 | - | - | - | - |
|
1055 |
+
| 0.2402 | 244 | 4.3158 | - | - | - | - |
|
1056 |
+
| 0.2411 | 245 | 2.8619 | - | - | - | - |
|
1057 |
+
| 0.2421 | 246 | 2.5156 | - | - | - | - |
|
1058 |
+
| 0.2431 | 247 | 3.2144 | - | - | - | - |
|
1059 |
+
| 0.2441 | 248 | 3.5927 | - | - | - | - |
|
1060 |
+
| 0.2451 | 249 | 2.6059 | - | - | - | - |
|
1061 |
+
| 0.2461 | 250 | 2.9758 | - | - | - | - |
|
1062 |
+
| 0.2470 | 251 | 3.9214 | - | - | - | - |
|
1063 |
+
| 0.2480 | 252 | 3.2892 | - | - | - | - |
|
1064 |
+
| 0.2490 | 253 | 2.9503 | - | - | - | - |
|
1065 |
+
| 0.25 | 254 | 2.5969 | - | - | - | - |
|
1066 |
+
| 0.2510 | 255 | 2.9908 | - | - | - | - |
|
1067 |
+
| 0.2520 | 256 | 2.8995 | - | - | - | - |
|
1068 |
+
| 0.2530 | 257 | 3.124 | - | - | - | - |
|
1069 |
+
| 0.2539 | 258 | 3.1197 | - | - | - | - |
|
1070 |
+
| 0.2549 | 259 | 2.3073 | - | - | - | - |
|
1071 |
+
| 0.2559 | 260 | 2.8441 | - | - | - | - |
|
1072 |
+
| 0.2569 | 261 | 1.9788 | - | - | - | - |
|
1073 |
+
| 0.2579 | 262 | 2.1442 | - | - | - | - |
|
1074 |
+
| 0.2589 | 263 | 4.9015 | - | - | - | - |
|
1075 |
+
| 0.2598 | 264 | 2.7866 | - | - | - | - |
|
1076 |
+
| 0.2608 | 265 | 2.4588 | - | - | - | - |
|
1077 |
+
| 0.2618 | 266 | 2.3909 | - | - | - | - |
|
1078 |
+
| 0.2628 | 267 | 4.7394 | - | - | - | - |
|
1079 |
+
| 0.2638 | 268 | 3.1581 | - | - | - | - |
|
1080 |
+
| 0.2648 | 269 | 3.973 | - | - | - | - |
|
1081 |
+
| 0.2657 | 270 | 4.1565 | - | - | - | - |
|
1082 |
+
| 0.2667 | 271 | 2.5183 | - | - | - | - |
|
1083 |
+
| 0.2677 | 272 | 3.614 | - | - | - | - |
|
1084 |
+
| 0.2687 | 273 | 2.6858 | - | - | - | - |
|
1085 |
+
| 0.2697 | 274 | 3.1182 | - | - | - | - |
|
1086 |
+
| 0.2707 | 275 | 2.9628 | - | - | - | - |
|
1087 |
+
| 0.2717 | 276 | 2.8376 | - | - | - | - |
|
1088 |
+
| 0.2726 | 277 | 2.7858 | - | - | - | - |
|
1089 |
+
| 0.2736 | 278 | 2.1037 | - | - | - | - |
|
1090 |
+
| 0.2746 | 279 | 3.0436 | - | - | - | - |
|
1091 |
+
| 0.2756 | 280 | 3.4125 | - | - | - | - |
|
1092 |
+
| 0.2766 | 281 | 2.5027 | - | - | - | - |
|
1093 |
+
| 0.2776 | 282 | 2.7922 | - | - | - | - |
|
1094 |
+
| 0.2785 | 283 | 2.9762 | - | - | - | - |
|
1095 |
+
| 0.2795 | 284 | 2.6458 | - | - | - | - |
|
1096 |
+
| 0.2805 | 285 | 2.962 | - | - | - | - |
|
1097 |
+
| 0.2815 | 286 | 2.5439 | - | - | - | - |
|
1098 |
+
| 0.2825 | 287 | 2.8437 | - | - | - | - |
|
1099 |
+
| 0.2835 | 288 | 3.2134 | - | - | - | - |
|
1100 |
+
| 0.2844 | 289 | 2.5655 | - | - | - | - |
|
1101 |
+
| 0.2854 | 290 | 2.9465 | - | - | - | - |
|
1102 |
+
| 0.2864 | 291 | 2.4653 | - | - | - | - |
|
1103 |
+
| 0.2874 | 292 | 3.1467 | - | - | - | - |
|
1104 |
+
| 0.2884 | 293 | 2.6551 | - | - | - | - |
|
1105 |
+
| 0.2894 | 294 | 2.5098 | - | - | - | - |
|
1106 |
+
| 0.2904 | 295 | 2.5988 | - | - | - | - |
|
1107 |
+
| 0.2913 | 296 | 3.778 | - | - | - | - |
|
1108 |
+
| 0.2923 | 297 | 2.6257 | - | - | - | - |
|
1109 |
+
| 0.2933 | 298 | 2.5142 | - | - | - | - |
|
1110 |
+
| 0.2943 | 299 | 2.3182 | - | - | - | - |
|
1111 |
+
| 0.2953 | 300 | 3.3505 | - | - | - | - |
|
1112 |
+
| 0.2963 | 301 | 2.9615 | - | - | - | - |
|
1113 |
+
| 0.2972 | 302 | 2.9136 | - | - | - | - |
|
1114 |
+
| 0.2982 | 303 | 2.6192 | - | - | - | - |
|
1115 |
+
| 0.2992 | 304 | 2.3255 | - | - | - | - |
|
1116 |
+
| 0.3002 | 305 | 2.7168 | - | - | - | - |
|
1117 |
+
|
1118 |
+
</details>
|
1119 |
+
|
1120 |
+
### Framework Versions
|
1121 |
+
- Python: 3.10.12
|
1122 |
+
- Sentence Transformers: 3.2.1
|
1123 |
+
- Transformers: 4.44.2
|
1124 |
+
- PyTorch: 2.5.0+cu121
|
1125 |
+
- Accelerate: 0.34.2
|
1126 |
+
- Datasets: 3.0.2
|
1127 |
+
- Tokenizers: 0.19.1
|
1128 |
+
|
1129 |
+
## Citation
|
1130 |
+
|
1131 |
+
### BibTeX
|
1132 |
+
|
1133 |
+
#### Sentence Transformers
|
1134 |
+
```bibtex
|
1135 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1136 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1137 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1138 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1139 |
+
month = "11",
|
1140 |
+
year = "2019",
|
1141 |
+
publisher = "Association for Computational Linguistics",
|
1142 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1143 |
+
}
|
1144 |
+
```
|
1145 |
+
|
1146 |
+
#### GISTEmbedLoss
|
1147 |
+
```bibtex
|
1148 |
+
@misc{solatorio2024gistembed,
|
1149 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
1150 |
+
author={Aivin V. Solatorio},
|
1151 |
+
year={2024},
|
1152 |
+
eprint={2402.16829},
|
1153 |
+
archivePrefix={arXiv},
|
1154 |
+
primaryClass={cs.LG}
|
1155 |
+
}
|
1156 |
+
```
|
1157 |
+
|
1158 |
+
<!--
|
1159 |
+
## Glossary
|
1160 |
+
|
1161 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1162 |
+
-->
|
1163 |
+
|
1164 |
+
<!--
|
1165 |
+
## Model Card Authors
|
1166 |
+
|
1167 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1168 |
+
-->
|
1169 |
+
|
1170 |
+
<!--
|
1171 |
+
## Model Card Contact
|
1172 |
+
|
1173 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1174 |
+
-->
|
checkpoint-305/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-305/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.2",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-305/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.5.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-305/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_AdvancedWeightedPooling",
|
12 |
+
"type": "__main__.AdvancedWeightedPooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-305/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb6006dd2cdf74a81c4d2f6e037ceab522daf7b6451361b3437ed4e74d5249b5
|
3 |
+
size 151305210
|
checkpoint-305/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd909b5a024a765fe1f01508aafaf02546a61be1cb0d191b905bdc685f4c567
|
3 |
+
size 565251810
|
checkpoint-305/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36eddb3c27f036ef39a93dd3f73f5a5d231771beb486e7a9050acda2ec3c7ae8
|
3 |
+
size 14180
|
checkpoint-305/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1918ed3953a86f69d28ad390ead9cd56d483d36b66eb8b2af766465b180544c0
|
3 |
+
size 1256
|
checkpoint-305/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-305/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
checkpoint-305/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-305/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-305/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
checkpoint-305/trainer_state.json
ADDED
@@ -0,0 +1,2257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3001968503937008,
|
5 |
+
"eval_steps": 153,
|
6 |
+
"global_step": 305,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.000984251968503937,
|
13 |
+
"grad_norm": NaN,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 18.7427,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.001968503937007874,
|
20 |
+
"grad_norm": NaN,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 11.6434,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.002952755905511811,
|
27 |
+
"grad_norm": Infinity,
|
28 |
+
"learning_rate": 0.0,
|
29 |
+
"loss": 7.4859,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.003937007874015748,
|
34 |
+
"grad_norm": 31.9741268157959,
|
35 |
+
"learning_rate": 9.940357852882705e-10,
|
36 |
+
"loss": 7.3779,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.004921259842519685,
|
41 |
+
"grad_norm": Infinity,
|
42 |
+
"learning_rate": 9.940357852882705e-10,
|
43 |
+
"loss": 17.5878,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.005905511811023622,
|
48 |
+
"grad_norm": 40.571693420410156,
|
49 |
+
"learning_rate": 1.988071570576541e-09,
|
50 |
+
"loss": 8.4984,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.006889763779527559,
|
55 |
+
"grad_norm": 44.114723205566406,
|
56 |
+
"learning_rate": 2.9821073558648116e-09,
|
57 |
+
"loss": 8.375,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.007874015748031496,
|
62 |
+
"grad_norm": 39.95664978027344,
|
63 |
+
"learning_rate": 3.976143141153082e-09,
|
64 |
+
"loss": 7.3241,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.008858267716535433,
|
69 |
+
"grad_norm": 54.75717544555664,
|
70 |
+
"learning_rate": 4.970178926441353e-09,
|
71 |
+
"loss": 10.3081,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.00984251968503937,
|
76 |
+
"grad_norm": 48.129844665527344,
|
77 |
+
"learning_rate": 5.964214711729623e-09,
|
78 |
+
"loss": 8.5363,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.010826771653543307,
|
83 |
+
"grad_norm": Infinity,
|
84 |
+
"learning_rate": 5.964214711729623e-09,
|
85 |
+
"loss": 17.2241,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.011811023622047244,
|
90 |
+
"grad_norm": 37.79861068725586,
|
91 |
+
"learning_rate": 6.9582504970178946e-09,
|
92 |
+
"loss": 7.575,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.012795275590551181,
|
97 |
+
"grad_norm": 37.935638427734375,
|
98 |
+
"learning_rate": 7.952286282306164e-09,
|
99 |
+
"loss": 9.1905,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.013779527559055118,
|
104 |
+
"grad_norm": 59.75738525390625,
|
105 |
+
"learning_rate": 8.946322067594435e-09,
|
106 |
+
"loss": 11.7727,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.014763779527559055,
|
111 |
+
"grad_norm": 46.43831253051758,
|
112 |
+
"learning_rate": 9.940357852882705e-09,
|
113 |
+
"loss": 9.5827,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.015748031496062992,
|
118 |
+
"grad_norm": 36.75105667114258,
|
119 |
+
"learning_rate": 1.0934393638170978e-08,
|
120 |
+
"loss": 7.4432,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01673228346456693,
|
125 |
+
"grad_norm": 30.298437118530273,
|
126 |
+
"learning_rate": 1.1928429423459246e-08,
|
127 |
+
"loss": 7.1573,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.017716535433070866,
|
132 |
+
"grad_norm": 96.71277618408203,
|
133 |
+
"learning_rate": 1.2922465208747517e-08,
|
134 |
+
"loss": 19.8016,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.018700787401574805,
|
139 |
+
"grad_norm": 84.41168212890625,
|
140 |
+
"learning_rate": 1.3916500994035789e-08,
|
141 |
+
"loss": 19.5118,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.01968503937007874,
|
146 |
+
"grad_norm": 35.94807815551758,
|
147 |
+
"learning_rate": 1.4910536779324056e-08,
|
148 |
+
"loss": 7.9062,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.02066929133858268,
|
153 |
+
"grad_norm": 41.35914611816406,
|
154 |
+
"learning_rate": 1.590457256461233e-08,
|
155 |
+
"loss": 8.6791,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.021653543307086614,
|
160 |
+
"grad_norm": 37.65285873413086,
|
161 |
+
"learning_rate": 1.68986083499006e-08,
|
162 |
+
"loss": 7.7318,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.022637795275590553,
|
167 |
+
"grad_norm": 40.24616622924805,
|
168 |
+
"learning_rate": 1.789264413518887e-08,
|
169 |
+
"loss": 7.9319,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.023622047244094488,
|
174 |
+
"grad_norm": 32.05257034301758,
|
175 |
+
"learning_rate": 1.888667992047714e-08,
|
176 |
+
"loss": 7.192,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.024606299212598427,
|
181 |
+
"grad_norm": 87.60692596435547,
|
182 |
+
"learning_rate": 1.988071570576541e-08,
|
183 |
+
"loss": 15.5799,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.025590551181102362,
|
188 |
+
"grad_norm": 46.73486328125,
|
189 |
+
"learning_rate": 2.087475149105368e-08,
|
190 |
+
"loss": 9.7859,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.0265748031496063,
|
195 |
+
"grad_norm": 50.18130111694336,
|
196 |
+
"learning_rate": 2.1868787276341955e-08,
|
197 |
+
"loss": 9.9259,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.027559055118110236,
|
202 |
+
"grad_norm": 29.22075653076172,
|
203 |
+
"learning_rate": 2.2862823061630224e-08,
|
204 |
+
"loss": 6.3076,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.028543307086614175,
|
209 |
+
"grad_norm": 37.356693267822266,
|
210 |
+
"learning_rate": 2.3856858846918493e-08,
|
211 |
+
"loss": 7.4471,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02952755905511811,
|
216 |
+
"grad_norm": 35.80938720703125,
|
217 |
+
"learning_rate": 2.4850894632206765e-08,
|
218 |
+
"loss": 7.1246,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.03051181102362205,
|
223 |
+
"grad_norm": 25.738622665405273,
|
224 |
+
"learning_rate": 2.5844930417495034e-08,
|
225 |
+
"loss": 6.5505,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.031496062992125984,
|
230 |
+
"grad_norm": 83.83589935302734,
|
231 |
+
"learning_rate": 2.6838966202783303e-08,
|
232 |
+
"loss": 18.5194,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.03248031496062992,
|
237 |
+
"grad_norm": 33.8433837890625,
|
238 |
+
"learning_rate": 2.7833001988071578e-08,
|
239 |
+
"loss": 7.0747,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03346456692913386,
|
244 |
+
"grad_norm": 74.36174011230469,
|
245 |
+
"learning_rate": 2.8827037773359847e-08,
|
246 |
+
"loss": 14.9456,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.0344488188976378,
|
251 |
+
"grad_norm": 26.985536575317383,
|
252 |
+
"learning_rate": 2.982107355864811e-08,
|
253 |
+
"loss": 6.608,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03543307086614173,
|
258 |
+
"grad_norm": 40.41023635864258,
|
259 |
+
"learning_rate": 3.081510934393639e-08,
|
260 |
+
"loss": 8.4672,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03641732283464567,
|
265 |
+
"grad_norm": 33.05155944824219,
|
266 |
+
"learning_rate": 3.180914512922466e-08,
|
267 |
+
"loss": 6.8853,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.03740157480314961,
|
272 |
+
"grad_norm": 74.3410873413086,
|
273 |
+
"learning_rate": 3.280318091451293e-08,
|
274 |
+
"loss": 13.6063,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.038385826771653545,
|
279 |
+
"grad_norm": 35.997493743896484,
|
280 |
+
"learning_rate": 3.37972166998012e-08,
|
281 |
+
"loss": 7.2625,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.03937007874015748,
|
286 |
+
"grad_norm": 31.67265510559082,
|
287 |
+
"learning_rate": 3.479125248508947e-08,
|
288 |
+
"loss": 6.2234,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.040354330708661415,
|
293 |
+
"grad_norm": 78.0589599609375,
|
294 |
+
"learning_rate": 3.578528827037774e-08,
|
295 |
+
"loss": 14.9675,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.04133858267716536,
|
300 |
+
"grad_norm": 27.73711395263672,
|
301 |
+
"learning_rate": 3.6779324055666005e-08,
|
302 |
+
"loss": 6.6038,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.04232283464566929,
|
307 |
+
"grad_norm": 61.068092346191406,
|
308 |
+
"learning_rate": 3.777335984095428e-08,
|
309 |
+
"loss": 13.1173,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.04330708661417323,
|
314 |
+
"grad_norm": 84.73564910888672,
|
315 |
+
"learning_rate": 3.8767395626242556e-08,
|
316 |
+
"loss": 16.6992,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.04429133858267716,
|
321 |
+
"grad_norm": 27.289846420288086,
|
322 |
+
"learning_rate": 3.976143141153082e-08,
|
323 |
+
"loss": 6.4828,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.045275590551181105,
|
328 |
+
"grad_norm": 25.921550750732422,
|
329 |
+
"learning_rate": 4.0755467196819094e-08,
|
330 |
+
"loss": 5.9815,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.04625984251968504,
|
335 |
+
"grad_norm": 28.005834579467773,
|
336 |
+
"learning_rate": 4.174950298210736e-08,
|
337 |
+
"loss": 6.1738,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.047244094488188976,
|
342 |
+
"grad_norm": 33.678253173828125,
|
343 |
+
"learning_rate": 4.274353876739563e-08,
|
344 |
+
"loss": 7.134,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.04822834645669291,
|
349 |
+
"grad_norm": 50.81912612915039,
|
350 |
+
"learning_rate": 4.373757455268391e-08,
|
351 |
+
"loss": 9.3933,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.04921259842519685,
|
356 |
+
"grad_norm": 53.16002655029297,
|
357 |
+
"learning_rate": 4.4731610337972176e-08,
|
358 |
+
"loss": 10.8085,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.05019685039370079,
|
363 |
+
"grad_norm": 53.343692779541016,
|
364 |
+
"learning_rate": 4.572564612326045e-08,
|
365 |
+
"loss": 11.4172,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.051181102362204724,
|
370 |
+
"grad_norm": 29.51181983947754,
|
371 |
+
"learning_rate": 4.6719681908548713e-08,
|
372 |
+
"loss": 7.3397,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.05216535433070866,
|
377 |
+
"grad_norm": 28.54021644592285,
|
378 |
+
"learning_rate": 4.7713717693836986e-08,
|
379 |
+
"loss": 5.8851,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.0531496062992126,
|
384 |
+
"grad_norm": 29.310325622558594,
|
385 |
+
"learning_rate": 4.870775347912525e-08,
|
386 |
+
"loss": 6.8105,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.054133858267716536,
|
391 |
+
"grad_norm": 19.80927276611328,
|
392 |
+
"learning_rate": 4.970178926441353e-08,
|
393 |
+
"loss": 5.3637,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.05511811023622047,
|
398 |
+
"grad_norm": 30.965606689453125,
|
399 |
+
"learning_rate": 5.06958250497018e-08,
|
400 |
+
"loss": 6.2628,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.05610236220472441,
|
405 |
+
"grad_norm": 21.39442253112793,
|
406 |
+
"learning_rate": 5.168986083499007e-08,
|
407 |
+
"loss": 6.0039,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.05708661417322835,
|
412 |
+
"grad_norm": 38.37812805175781,
|
413 |
+
"learning_rate": 5.268389662027834e-08,
|
414 |
+
"loss": 7.5859,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.058070866141732284,
|
419 |
+
"grad_norm": 22.37571144104004,
|
420 |
+
"learning_rate": 5.3677932405566605e-08,
|
421 |
+
"loss": 6.0802,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.05905511811023622,
|
426 |
+
"grad_norm": 27.690608978271484,
|
427 |
+
"learning_rate": 5.467196819085488e-08,
|
428 |
+
"loss": 5.5822,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.060039370078740155,
|
433 |
+
"grad_norm": 23.312894821166992,
|
434 |
+
"learning_rate": 5.5666003976143156e-08,
|
435 |
+
"loss": 5.8773,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.0610236220472441,
|
440 |
+
"grad_norm": 19.575923919677734,
|
441 |
+
"learning_rate": 5.666003976143142e-08,
|
442 |
+
"loss": 6.0814,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.06200787401574803,
|
447 |
+
"grad_norm": 20.126571655273438,
|
448 |
+
"learning_rate": 5.7654075546719694e-08,
|
449 |
+
"loss": 5.4483,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.06299212598425197,
|
454 |
+
"grad_norm": 57.36194610595703,
|
455 |
+
"learning_rate": 5.864811133200796e-08,
|
456 |
+
"loss": 10.2506,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.0639763779527559,
|
461 |
+
"grad_norm": 48.520416259765625,
|
462 |
+
"learning_rate": 5.964214711729623e-08,
|
463 |
+
"loss": 10.5976,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.06496062992125984,
|
468 |
+
"grad_norm": 24.259727478027344,
|
469 |
+
"learning_rate": 6.06361829025845e-08,
|
470 |
+
"loss": 6.9942,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.06594488188976377,
|
475 |
+
"grad_norm": 18.457971572875977,
|
476 |
+
"learning_rate": 6.163021868787278e-08,
|
477 |
+
"loss": 5.4813,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.06692913385826772,
|
482 |
+
"grad_norm": 27.634117126464844,
|
483 |
+
"learning_rate": 6.262425447316104e-08,
|
484 |
+
"loss": 7.045,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.06791338582677166,
|
489 |
+
"grad_norm": 18.592876434326172,
|
490 |
+
"learning_rate": 6.361829025844931e-08,
|
491 |
+
"loss": 5.8549,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.0688976377952756,
|
496 |
+
"grad_norm": 37.92665481567383,
|
497 |
+
"learning_rate": 6.461232604373759e-08,
|
498 |
+
"loss": 8.8514,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.06988188976377953,
|
503 |
+
"grad_norm": 19.356266021728516,
|
504 |
+
"learning_rate": 6.560636182902586e-08,
|
505 |
+
"loss": 5.2557,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.07086614173228346,
|
510 |
+
"grad_norm": 13.698501586914062,
|
511 |
+
"learning_rate": 6.660039761431412e-08,
|
512 |
+
"loss": 5.1181,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.0718503937007874,
|
517 |
+
"grad_norm": 19.626392364501953,
|
518 |
+
"learning_rate": 6.75944333996024e-08,
|
519 |
+
"loss": 5.5331,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.07283464566929133,
|
524 |
+
"grad_norm": 15.392860412597656,
|
525 |
+
"learning_rate": 6.858846918489067e-08,
|
526 |
+
"loss": 5.5944,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.07381889763779527,
|
531 |
+
"grad_norm": 16.435239791870117,
|
532 |
+
"learning_rate": 6.958250497017893e-08,
|
533 |
+
"loss": 4.6332,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.07480314960629922,
|
538 |
+
"grad_norm": 16.286462783813477,
|
539 |
+
"learning_rate": 7.057654075546721e-08,
|
540 |
+
"loss": 4.9532,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.07578740157480315,
|
545 |
+
"grad_norm": 17.462007522583008,
|
546 |
+
"learning_rate": 7.157057654075548e-08,
|
547 |
+
"loss": 5.055,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.07677165354330709,
|
552 |
+
"grad_norm": 15.096108436584473,
|
553 |
+
"learning_rate": 7.256461232604374e-08,
|
554 |
+
"loss": 4.5005,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.07775590551181102,
|
559 |
+
"grad_norm": 14.233656883239746,
|
560 |
+
"learning_rate": 7.355864811133201e-08,
|
561 |
+
"loss": 5.1997,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.07874015748031496,
|
566 |
+
"grad_norm": 19.416706085205078,
|
567 |
+
"learning_rate": 7.455268389662029e-08,
|
568 |
+
"loss": 5.1479,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.0797244094488189,
|
573 |
+
"grad_norm": 18.06542205810547,
|
574 |
+
"learning_rate": 7.554671968190855e-08,
|
575 |
+
"loss": 5.1777,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.08070866141732283,
|
580 |
+
"grad_norm": 16.027755737304688,
|
581 |
+
"learning_rate": 7.654075546719683e-08,
|
582 |
+
"loss": 5.5565,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.08169291338582677,
|
587 |
+
"grad_norm": 16.291139602661133,
|
588 |
+
"learning_rate": 7.753479125248511e-08,
|
589 |
+
"loss": 4.6999,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.08267716535433071,
|
594 |
+
"grad_norm": 16.005495071411133,
|
595 |
+
"learning_rate": 7.852882703777338e-08,
|
596 |
+
"loss": 5.0681,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.08366141732283465,
|
601 |
+
"grad_norm": 19.505733489990234,
|
602 |
+
"learning_rate": 7.952286282306164e-08,
|
603 |
+
"loss": 5.2208,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.08464566929133858,
|
608 |
+
"grad_norm": 18.256221771240234,
|
609 |
+
"learning_rate": 8.051689860834992e-08,
|
610 |
+
"loss": 4.56,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.08562992125984252,
|
615 |
+
"grad_norm": 14.99673843383789,
|
616 |
+
"learning_rate": 8.151093439363819e-08,
|
617 |
+
"loss": 4.6793,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.08661417322834646,
|
622 |
+
"grad_norm": 13.485681533813477,
|
623 |
+
"learning_rate": 8.250497017892645e-08,
|
624 |
+
"loss": 4.4611,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.08759842519685039,
|
629 |
+
"grad_norm": 52.90532302856445,
|
630 |
+
"learning_rate": 8.349900596421472e-08,
|
631 |
+
"loss": 9.623,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.08858267716535433,
|
636 |
+
"grad_norm": 18.402536392211914,
|
637 |
+
"learning_rate": 8.4493041749503e-08,
|
638 |
+
"loss": 5.0316,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.08956692913385826,
|
643 |
+
"grad_norm": 12.668858528137207,
|
644 |
+
"learning_rate": 8.548707753479126e-08,
|
645 |
+
"loss": 4.1771,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.09055118110236221,
|
650 |
+
"grad_norm": 17.02667236328125,
|
651 |
+
"learning_rate": 8.648111332007953e-08,
|
652 |
+
"loss": 4.9652,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.09153543307086615,
|
657 |
+
"grad_norm": 51.03838348388672,
|
658 |
+
"learning_rate": 8.747514910536782e-08,
|
659 |
+
"loss": 8.7432,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.09251968503937008,
|
664 |
+
"grad_norm": 15.051873207092285,
|
665 |
+
"learning_rate": 8.846918489065609e-08,
|
666 |
+
"loss": 4.6234,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.09350393700787402,
|
671 |
+
"grad_norm": 15.075822830200195,
|
672 |
+
"learning_rate": 8.946322067594435e-08,
|
673 |
+
"loss": 4.4016,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.09448818897637795,
|
678 |
+
"grad_norm": 14.73617172241211,
|
679 |
+
"learning_rate": 9.045725646123262e-08,
|
680 |
+
"loss": 4.9903,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.09547244094488189,
|
685 |
+
"grad_norm": 12.564230918884277,
|
686 |
+
"learning_rate": 9.14512922465209e-08,
|
687 |
+
"loss": 4.5606,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.09645669291338582,
|
692 |
+
"grad_norm": 12.062474250793457,
|
693 |
+
"learning_rate": 9.244532803180916e-08,
|
694 |
+
"loss": 4.9534,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.09744094488188976,
|
699 |
+
"grad_norm": 42.591461181640625,
|
700 |
+
"learning_rate": 9.343936381709743e-08,
|
701 |
+
"loss": 8.1838,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.0984251968503937,
|
706 |
+
"grad_norm": 12.18688678741455,
|
707 |
+
"learning_rate": 9.44333996023857e-08,
|
708 |
+
"loss": 4.9736,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.09940944881889764,
|
713 |
+
"grad_norm": 14.301939964294434,
|
714 |
+
"learning_rate": 9.542743538767397e-08,
|
715 |
+
"loss": 4.4733,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.10039370078740158,
|
720 |
+
"grad_norm": 15.062311172485352,
|
721 |
+
"learning_rate": 9.642147117296224e-08,
|
722 |
+
"loss": 4.9725,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.10137795275590551,
|
727 |
+
"grad_norm": 11.707622528076172,
|
728 |
+
"learning_rate": 9.74155069582505e-08,
|
729 |
+
"loss": 4.5861,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.10236220472440945,
|
734 |
+
"grad_norm": 42.08045196533203,
|
735 |
+
"learning_rate": 9.840954274353878e-08,
|
736 |
+
"loss": 7.7634,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.10334645669291338,
|
741 |
+
"grad_norm": 13.918876647949219,
|
742 |
+
"learning_rate": 9.940357852882706e-08,
|
743 |
+
"loss": 4.9915,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.10433070866141732,
|
748 |
+
"grad_norm": 12.0372953414917,
|
749 |
+
"learning_rate": 1.0039761431411533e-07,
|
750 |
+
"loss": 5.1391,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.10531496062992125,
|
755 |
+
"grad_norm": 16.739591598510742,
|
756 |
+
"learning_rate": 1.013916500994036e-07,
|
757 |
+
"loss": 5.0157,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.1062992125984252,
|
762 |
+
"grad_norm": 16.80640983581543,
|
763 |
+
"learning_rate": 1.0238568588469187e-07,
|
764 |
+
"loss": 4.0982,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.10728346456692914,
|
769 |
+
"grad_norm": 10.70914077758789,
|
770 |
+
"learning_rate": 1.0337972166998014e-07,
|
771 |
+
"loss": 4.2178,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.10826771653543307,
|
776 |
+
"grad_norm": 11.523154258728027,
|
777 |
+
"learning_rate": 1.043737574552684e-07,
|
778 |
+
"loss": 4.6193,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.10925196850393701,
|
783 |
+
"grad_norm": 14.624194145202637,
|
784 |
+
"learning_rate": 1.0536779324055668e-07,
|
785 |
+
"loss": 4.7638,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.11023622047244094,
|
790 |
+
"grad_norm": 11.593772888183594,
|
791 |
+
"learning_rate": 1.0636182902584495e-07,
|
792 |
+
"loss": 4.1207,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.11122047244094488,
|
797 |
+
"grad_norm": 18.1988468170166,
|
798 |
+
"learning_rate": 1.0735586481113321e-07,
|
799 |
+
"loss": 5.2034,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.11220472440944881,
|
804 |
+
"grad_norm": 14.054649353027344,
|
805 |
+
"learning_rate": 1.0834990059642149e-07,
|
806 |
+
"loss": 5.0693,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.11318897637795275,
|
811 |
+
"grad_norm": 12.262086868286133,
|
812 |
+
"learning_rate": 1.0934393638170976e-07,
|
813 |
+
"loss": 4.7895,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.1141732283464567,
|
818 |
+
"grad_norm": 12.955352783203125,
|
819 |
+
"learning_rate": 1.1033797216699802e-07,
|
820 |
+
"loss": 4.9486,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.11515748031496063,
|
825 |
+
"grad_norm": 14.151504516601562,
|
826 |
+
"learning_rate": 1.1133200795228631e-07,
|
827 |
+
"loss": 4.6552,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.11614173228346457,
|
832 |
+
"grad_norm": 11.60208511352539,
|
833 |
+
"learning_rate": 1.1232604373757458e-07,
|
834 |
+
"loss": 4.4555,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.1171259842519685,
|
839 |
+
"grad_norm": 11.05080509185791,
|
840 |
+
"learning_rate": 1.1332007952286284e-07,
|
841 |
+
"loss": 4.8977,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.11811023622047244,
|
846 |
+
"grad_norm": 43.464908599853516,
|
847 |
+
"learning_rate": 1.1431411530815111e-07,
|
848 |
+
"loss": 7.6836,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.11909448818897637,
|
853 |
+
"grad_norm": 11.060967445373535,
|
854 |
+
"learning_rate": 1.1530815109343939e-07,
|
855 |
+
"loss": 4.8106,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.12007874015748031,
|
860 |
+
"grad_norm": 11.406394004821777,
|
861 |
+
"learning_rate": 1.1630218687872765e-07,
|
862 |
+
"loss": 4.9958,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.12106299212598425,
|
867 |
+
"grad_norm": 12.630412101745605,
|
868 |
+
"learning_rate": 1.1729622266401592e-07,
|
869 |
+
"loss": 4.4585,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.1220472440944882,
|
874 |
+
"grad_norm": 42.50083541870117,
|
875 |
+
"learning_rate": 1.182902584493042e-07,
|
876 |
+
"loss": 7.5559,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.12303149606299213,
|
881 |
+
"grad_norm": 12.229009628295898,
|
882 |
+
"learning_rate": 1.1928429423459245e-07,
|
883 |
+
"loss": 4.2636,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.12401574803149606,
|
888 |
+
"grad_norm": 9.794486999511719,
|
889 |
+
"learning_rate": 1.2027833001988073e-07,
|
890 |
+
"loss": 4.0436,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.125,
|
895 |
+
"grad_norm": 11.505509376525879,
|
896 |
+
"learning_rate": 1.21272365805169e-07,
|
897 |
+
"loss": 4.7416,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.12598425196850394,
|
902 |
+
"grad_norm": 12.046993255615234,
|
903 |
+
"learning_rate": 1.222664015904573e-07,
|
904 |
+
"loss": 4.2215,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.12696850393700787,
|
909 |
+
"grad_norm": 33.795265197753906,
|
910 |
+
"learning_rate": 1.2326043737574557e-07,
|
911 |
+
"loss": 6.3561,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.1279527559055118,
|
916 |
+
"grad_norm": 33.15379333496094,
|
917 |
+
"learning_rate": 1.2425447316103382e-07,
|
918 |
+
"loss": 6.2299,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.12893700787401574,
|
923 |
+
"grad_norm": 11.174860000610352,
|
924 |
+
"learning_rate": 1.2524850894632207e-07,
|
925 |
+
"loss": 4.3492,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.12992125984251968,
|
930 |
+
"grad_norm": 10.696345329284668,
|
931 |
+
"learning_rate": 1.2624254473161035e-07,
|
932 |
+
"loss": 4.0216,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.1309055118110236,
|
937 |
+
"grad_norm": 35.72112274169922,
|
938 |
+
"learning_rate": 1.2723658051689863e-07,
|
939 |
+
"loss": 6.963,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.13188976377952755,
|
944 |
+
"grad_norm": 9.074990272521973,
|
945 |
+
"learning_rate": 1.282306163021869e-07,
|
946 |
+
"loss": 3.9474,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.1328740157480315,
|
951 |
+
"grad_norm": 11.409770965576172,
|
952 |
+
"learning_rate": 1.2922465208747519e-07,
|
953 |
+
"loss": 4.3437,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.13385826771653545,
|
958 |
+
"grad_norm": 10.008737564086914,
|
959 |
+
"learning_rate": 1.3021868787276344e-07,
|
960 |
+
"loss": 3.6267,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.13484251968503938,
|
965 |
+
"grad_norm": 11.481470108032227,
|
966 |
+
"learning_rate": 1.3121272365805172e-07,
|
967 |
+
"loss": 3.9896,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.13582677165354332,
|
972 |
+
"grad_norm": 12.856668472290039,
|
973 |
+
"learning_rate": 1.3220675944333997e-07,
|
974 |
+
"loss": 4.8156,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.13681102362204725,
|
979 |
+
"grad_norm": 12.462326049804688,
|
980 |
+
"learning_rate": 1.3320079522862825e-07,
|
981 |
+
"loss": 4.9751,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.1377952755905512,
|
986 |
+
"grad_norm": 13.430492401123047,
|
987 |
+
"learning_rate": 1.3419483101391653e-07,
|
988 |
+
"loss": 4.4144,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.13877952755905512,
|
993 |
+
"grad_norm": 24.038984298706055,
|
994 |
+
"learning_rate": 1.351888667992048e-07,
|
995 |
+
"loss": 4.7213,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.13976377952755906,
|
1000 |
+
"grad_norm": 39.7520637512207,
|
1001 |
+
"learning_rate": 1.3618290258449306e-07,
|
1002 |
+
"loss": 6.6081,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.140748031496063,
|
1007 |
+
"grad_norm": 10.726151466369629,
|
1008 |
+
"learning_rate": 1.3717693836978134e-07,
|
1009 |
+
"loss": 4.2929,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.14173228346456693,
|
1014 |
+
"grad_norm": 11.658100128173828,
|
1015 |
+
"learning_rate": 1.381709741550696e-07,
|
1016 |
+
"loss": 4.2537,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.14271653543307086,
|
1021 |
+
"grad_norm": 9.662211418151855,
|
1022 |
+
"learning_rate": 1.3916500994035787e-07,
|
1023 |
+
"loss": 4.0647,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.1437007874015748,
|
1028 |
+
"grad_norm": 10.004919052124023,
|
1029 |
+
"learning_rate": 1.4015904572564615e-07,
|
1030 |
+
"loss": 3.937,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.14468503937007873,
|
1035 |
+
"grad_norm": 35.38102340698242,
|
1036 |
+
"learning_rate": 1.4115308151093443e-07,
|
1037 |
+
"loss": 5.6582,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.14566929133858267,
|
1042 |
+
"grad_norm": 11.280171394348145,
|
1043 |
+
"learning_rate": 1.421471172962227e-07,
|
1044 |
+
"loss": 4.2648,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.1466535433070866,
|
1049 |
+
"grad_norm": 10.569673538208008,
|
1050 |
+
"learning_rate": 1.4314115308151096e-07,
|
1051 |
+
"loss": 4.4429,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.14763779527559054,
|
1056 |
+
"grad_norm": 14.092275619506836,
|
1057 |
+
"learning_rate": 1.4413518886679924e-07,
|
1058 |
+
"loss": 3.6197,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.1486220472440945,
|
1063 |
+
"grad_norm": 8.960445404052734,
|
1064 |
+
"learning_rate": 1.451292246520875e-07,
|
1065 |
+
"loss": 3.7953,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.14960629921259844,
|
1070 |
+
"grad_norm": 11.712779998779297,
|
1071 |
+
"learning_rate": 1.4612326043737577e-07,
|
1072 |
+
"loss": 3.8175,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.15059055118110237,
|
1077 |
+
"grad_norm": 11.68183708190918,
|
1078 |
+
"learning_rate": 1.4711729622266402e-07,
|
1079 |
+
"loss": 4.5137,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.15059055118110237,
|
1084 |
+
"eval_Qnli-dev_cosine_accuracy": 0.58203125,
|
1085 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9368094801902771,
|
1086 |
+
"eval_Qnli-dev_cosine_ap": 0.5484497034083067,
|
1087 |
+
"eval_Qnli-dev_cosine_f1": 0.6300268096514745,
|
1088 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.802739143371582,
|
1089 |
+
"eval_Qnli-dev_cosine_precision": 0.46078431372549017,
|
1090 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
1091 |
+
"eval_Qnli-dev_dot_accuracy": 0.58203125,
|
1092 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 719.7518310546875,
|
1093 |
+
"eval_Qnli-dev_dot_ap": 0.548461685358088,
|
1094 |
+
"eval_Qnli-dev_dot_f1": 0.6300268096514745,
|
1095 |
+
"eval_Qnli-dev_dot_f1_threshold": 616.7227783203125,
|
1096 |
+
"eval_Qnli-dev_dot_precision": 0.46078431372549017,
|
1097 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
1098 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.58203125,
|
1099 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 9.853867530822754,
|
1100 |
+
"eval_Qnli-dev_euclidean_ap": 0.5484497034083067,
|
1101 |
+
"eval_Qnli-dev_euclidean_f1": 0.6300268096514745,
|
1102 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 17.40953254699707,
|
1103 |
+
"eval_Qnli-dev_euclidean_precision": 0.46078431372549017,
|
1104 |
+
"eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
|
1105 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.607421875,
|
1106 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 182.1275177001953,
|
1107 |
+
"eval_Qnli-dev_manhattan_ap": 0.5750034744442096,
|
1108 |
+
"eval_Qnli-dev_manhattan_f1": 0.6303724928366763,
|
1109 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 230.0565185546875,
|
1110 |
+
"eval_Qnli-dev_manhattan_precision": 0.47619047619047616,
|
1111 |
+
"eval_Qnli-dev_manhattan_recall": 0.9322033898305084,
|
1112 |
+
"eval_Qnli-dev_max_accuracy": 0.607421875,
|
1113 |
+
"eval_Qnli-dev_max_accuracy_threshold": 719.7518310546875,
|
1114 |
+
"eval_Qnli-dev_max_ap": 0.5750034744442096,
|
1115 |
+
"eval_Qnli-dev_max_f1": 0.6303724928366763,
|
1116 |
+
"eval_Qnli-dev_max_f1_threshold": 616.7227783203125,
|
1117 |
+
"eval_Qnli-dev_max_precision": 0.47619047619047616,
|
1118 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
1119 |
+
"eval_allNLI-dev_cosine_accuracy": 0.66796875,
|
1120 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9721524119377136,
|
1121 |
+
"eval_allNLI-dev_cosine_ap": 0.3857994503224615,
|
1122 |
+
"eval_allNLI-dev_cosine_f1": 0.5029239766081871,
|
1123 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.821484386920929,
|
1124 |
+
"eval_allNLI-dev_cosine_precision": 0.33659491193737767,
|
1125 |
+
"eval_allNLI-dev_cosine_recall": 0.9942196531791907,
|
1126 |
+
"eval_allNLI-dev_dot_accuracy": 0.66796875,
|
1127 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 746.914794921875,
|
1128 |
+
"eval_allNLI-dev_dot_ap": 0.38572844452312516,
|
1129 |
+
"eval_allNLI-dev_dot_f1": 0.5029239766081871,
|
1130 |
+
"eval_allNLI-dev_dot_f1_threshold": 631.138916015625,
|
1131 |
+
"eval_allNLI-dev_dot_precision": 0.33659491193737767,
|
1132 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
1133 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.66796875,
|
1134 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 6.541449546813965,
|
1135 |
+
"eval_allNLI-dev_euclidean_ap": 0.3858031188548441,
|
1136 |
+
"eval_allNLI-dev_euclidean_f1": 0.5029239766081871,
|
1137 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 16.558998107910156,
|
1138 |
+
"eval_allNLI-dev_euclidean_precision": 0.33659491193737767,
|
1139 |
+
"eval_allNLI-dev_euclidean_recall": 0.9942196531791907,
|
1140 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.666015625,
|
1141 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 95.24527740478516,
|
1142 |
+
"eval_allNLI-dev_manhattan_ap": 0.39193409293721965,
|
1143 |
+
"eval_allNLI-dev_manhattan_f1": 0.5045317220543807,
|
1144 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 254.973388671875,
|
1145 |
+
"eval_allNLI-dev_manhattan_precision": 0.34151329243353784,
|
1146 |
+
"eval_allNLI-dev_manhattan_recall": 0.9653179190751445,
|
1147 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
1148 |
+
"eval_allNLI-dev_max_accuracy_threshold": 746.914794921875,
|
1149 |
+
"eval_allNLI-dev_max_ap": 0.39193409293721965,
|
1150 |
+
"eval_allNLI-dev_max_f1": 0.5045317220543807,
|
1151 |
+
"eval_allNLI-dev_max_f1_threshold": 631.138916015625,
|
1152 |
+
"eval_allNLI-dev_max_precision": 0.34151329243353784,
|
1153 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
1154 |
+
"eval_loss": 3.3210110664367676,
|
1155 |
+
"eval_runtime": 53.0927,
|
1156 |
+
"eval_samples_per_second": 31.341,
|
1157 |
+
"eval_sequential_score": 0.5750034744442096,
|
1158 |
+
"eval_steps_per_second": 0.132,
|
1159 |
+
"eval_sts-test_pearson_cosine": 0.12009124140478655,
|
1160 |
+
"eval_sts-test_pearson_dot": 0.11997652374043644,
|
1161 |
+
"eval_sts-test_pearson_euclidean": 0.15529980522625675,
|
1162 |
+
"eval_sts-test_pearson_manhattan": 0.18492770691981375,
|
1163 |
+
"eval_sts-test_pearson_max": 0.18492770691981375,
|
1164 |
+
"eval_sts-test_spearman_cosine": 0.180573622028628,
|
1165 |
+
"eval_sts-test_spearman_dot": 0.18041242798509616,
|
1166 |
+
"eval_sts-test_spearman_euclidean": 0.18058248277838349,
|
1167 |
+
"eval_sts-test_spearman_manhattan": 0.21139381574888486,
|
1168 |
+
"eval_sts-test_spearman_max": 0.21139381574888486,
|
1169 |
+
"step": 153
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 0.1515748031496063,
|
1173 |
+
"grad_norm": 12.480842590332031,
|
1174 |
+
"learning_rate": 1.4811133200795232e-07,
|
1175 |
+
"loss": 4.3528,
|
1176 |
+
"step": 154
|
1177 |
+
},
|
1178 |
+
{
|
1179 |
+
"epoch": 0.15255905511811024,
|
1180 |
+
"grad_norm": 10.134323120117188,
|
1181 |
+
"learning_rate": 1.4910536779324058e-07,
|
1182 |
+
"loss": 3.6573,
|
1183 |
+
"step": 155
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"epoch": 0.15354330708661418,
|
1187 |
+
"grad_norm": 11.572721481323242,
|
1188 |
+
"learning_rate": 1.5009940357852886e-07,
|
1189 |
+
"loss": 3.5248,
|
1190 |
+
"step": 156
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.1545275590551181,
|
1194 |
+
"grad_norm": 12.186054229736328,
|
1195 |
+
"learning_rate": 1.510934393638171e-07,
|
1196 |
+
"loss": 3.9275,
|
1197 |
+
"step": 157
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.15551181102362205,
|
1201 |
+
"grad_norm": 42.491851806640625,
|
1202 |
+
"learning_rate": 1.5208747514910539e-07,
|
1203 |
+
"loss": 7.1868,
|
1204 |
+
"step": 158
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 0.15649606299212598,
|
1208 |
+
"grad_norm": 10.867408752441406,
|
1209 |
+
"learning_rate": 1.5308151093439367e-07,
|
1210 |
+
"loss": 3.6294,
|
1211 |
+
"step": 159
|
1212 |
+
},
|
1213 |
+
{
|
1214 |
+
"epoch": 0.15748031496062992,
|
1215 |
+
"grad_norm": 11.463488578796387,
|
1216 |
+
"learning_rate": 1.5407554671968192e-07,
|
1217 |
+
"loss": 3.6886,
|
1218 |
+
"step": 160
|
1219 |
+
},
|
1220 |
+
{
|
1221 |
+
"epoch": 0.15846456692913385,
|
1222 |
+
"grad_norm": 10.748167991638184,
|
1223 |
+
"learning_rate": 1.5506958250497022e-07,
|
1224 |
+
"loss": 3.1873,
|
1225 |
+
"step": 161
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 0.1594488188976378,
|
1229 |
+
"grad_norm": 38.69701385498047,
|
1230 |
+
"learning_rate": 1.5606361829025848e-07,
|
1231 |
+
"loss": 6.1951,
|
1232 |
+
"step": 162
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.16043307086614172,
|
1236 |
+
"grad_norm": 11.077349662780762,
|
1237 |
+
"learning_rate": 1.5705765407554675e-07,
|
1238 |
+
"loss": 3.9747,
|
1239 |
+
"step": 163
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.16141732283464566,
|
1243 |
+
"grad_norm": 47.21928405761719,
|
1244 |
+
"learning_rate": 1.58051689860835e-07,
|
1245 |
+
"loss": 7.004,
|
1246 |
+
"step": 164
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 0.1624015748031496,
|
1250 |
+
"grad_norm": 15.23488712310791,
|
1251 |
+
"learning_rate": 1.5904572564612329e-07,
|
1252 |
+
"loss": 4.3221,
|
1253 |
+
"step": 165
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 0.16338582677165353,
|
1257 |
+
"grad_norm": 10.329791069030762,
|
1258 |
+
"learning_rate": 1.6003976143141154e-07,
|
1259 |
+
"loss": 3.5963,
|
1260 |
+
"step": 166
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 0.1643700787401575,
|
1264 |
+
"grad_norm": 9.624051094055176,
|
1265 |
+
"learning_rate": 1.6103379721669984e-07,
|
1266 |
+
"loss": 3.1988,
|
1267 |
+
"step": 167
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"epoch": 0.16535433070866143,
|
1271 |
+
"grad_norm": 11.511842727661133,
|
1272 |
+
"learning_rate": 1.620278330019881e-07,
|
1273 |
+
"loss": 3.8236,
|
1274 |
+
"step": 168
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.16633858267716536,
|
1278 |
+
"grad_norm": 10.053628921508789,
|
1279 |
+
"learning_rate": 1.6302186878727637e-07,
|
1280 |
+
"loss": 3.5063,
|
1281 |
+
"step": 169
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.1673228346456693,
|
1285 |
+
"grad_norm": 30.96078109741211,
|
1286 |
+
"learning_rate": 1.6401590457256465e-07,
|
1287 |
+
"loss": 5.9843,
|
1288 |
+
"step": 170
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 0.16830708661417323,
|
1292 |
+
"grad_norm": 27.598793029785156,
|
1293 |
+
"learning_rate": 1.650099403578529e-07,
|
1294 |
+
"loss": 5.884,
|
1295 |
+
"step": 171
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 0.16929133858267717,
|
1299 |
+
"grad_norm": 10.295365333557129,
|
1300 |
+
"learning_rate": 1.6600397614314118e-07,
|
1301 |
+
"loss": 4.1317,
|
1302 |
+
"step": 172
|
1303 |
+
},
|
1304 |
+
{
|
1305 |
+
"epoch": 0.1702755905511811,
|
1306 |
+
"grad_norm": 10.183586120605469,
|
1307 |
+
"learning_rate": 1.6699801192842944e-07,
|
1308 |
+
"loss": 3.9255,
|
1309 |
+
"step": 173
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"epoch": 0.17125984251968504,
|
1313 |
+
"grad_norm": 11.306191444396973,
|
1314 |
+
"learning_rate": 1.6799204771371774e-07,
|
1315 |
+
"loss": 4.1121,
|
1316 |
+
"step": 174
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.17224409448818898,
|
1320 |
+
"grad_norm": 9.866985321044922,
|
1321 |
+
"learning_rate": 1.68986083499006e-07,
|
1322 |
+
"loss": 3.7748,
|
1323 |
+
"step": 175
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.1732283464566929,
|
1327 |
+
"grad_norm": 25.779844284057617,
|
1328 |
+
"learning_rate": 1.6998011928429427e-07,
|
1329 |
+
"loss": 5.1602,
|
1330 |
+
"step": 176
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 0.17421259842519685,
|
1334 |
+
"grad_norm": 22.994916915893555,
|
1335 |
+
"learning_rate": 1.7097415506958253e-07,
|
1336 |
+
"loss": 4.8807,
|
1337 |
+
"step": 177
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.17519685039370078,
|
1341 |
+
"grad_norm": 9.323945045471191,
|
1342 |
+
"learning_rate": 1.719681908548708e-07,
|
1343 |
+
"loss": 3.4643,
|
1344 |
+
"step": 178
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 0.17618110236220472,
|
1348 |
+
"grad_norm": 9.101490020751953,
|
1349 |
+
"learning_rate": 1.7296222664015906e-07,
|
1350 |
+
"loss": 3.4937,
|
1351 |
+
"step": 179
|
1352 |
+
},
|
1353 |
+
{
|
1354 |
+
"epoch": 0.17716535433070865,
|
1355 |
+
"grad_norm": 18.585084915161133,
|
1356 |
+
"learning_rate": 1.7395626242544734e-07,
|
1357 |
+
"loss": 5.2731,
|
1358 |
+
"step": 180
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.1781496062992126,
|
1362 |
+
"grad_norm": 17.947126388549805,
|
1363 |
+
"learning_rate": 1.7495029821073564e-07,
|
1364 |
+
"loss": 4.6416,
|
1365 |
+
"step": 181
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 0.17913385826771652,
|
1369 |
+
"grad_norm": 9.495512008666992,
|
1370 |
+
"learning_rate": 1.759443339960239e-07,
|
1371 |
+
"loss": 3.5226,
|
1372 |
+
"step": 182
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 0.18011811023622049,
|
1376 |
+
"grad_norm": 21.095630645751953,
|
1377 |
+
"learning_rate": 1.7693836978131217e-07,
|
1378 |
+
"loss": 4.7794,
|
1379 |
+
"step": 183
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 0.18110236220472442,
|
1383 |
+
"grad_norm": 9.708288192749023,
|
1384 |
+
"learning_rate": 1.7793240556660042e-07,
|
1385 |
+
"loss": 3.8504,
|
1386 |
+
"step": 184
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.18208661417322836,
|
1390 |
+
"grad_norm": 10.588545799255371,
|
1391 |
+
"learning_rate": 1.789264413518887e-07,
|
1392 |
+
"loss": 3.5391,
|
1393 |
+
"step": 185
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 0.1830708661417323,
|
1397 |
+
"grad_norm": 10.238434791564941,
|
1398 |
+
"learning_rate": 1.7992047713717695e-07,
|
1399 |
+
"loss": 4.0291,
|
1400 |
+
"step": 186
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.18405511811023623,
|
1404 |
+
"grad_norm": 12.710492134094238,
|
1405 |
+
"learning_rate": 1.8091451292246523e-07,
|
1406 |
+
"loss": 3.5606,
|
1407 |
+
"step": 187
|
1408 |
+
},
|
1409 |
+
{
|
1410 |
+
"epoch": 0.18503937007874016,
|
1411 |
+
"grad_norm": 13.008979797363281,
|
1412 |
+
"learning_rate": 1.819085487077535e-07,
|
1413 |
+
"loss": 3.8957,
|
1414 |
+
"step": 188
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 0.1860236220472441,
|
1418 |
+
"grad_norm": 16.594804763793945,
|
1419 |
+
"learning_rate": 1.829025844930418e-07,
|
1420 |
+
"loss": 4.3657,
|
1421 |
+
"step": 189
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 0.18700787401574803,
|
1425 |
+
"grad_norm": 25.25087547302246,
|
1426 |
+
"learning_rate": 1.8389662027833004e-07,
|
1427 |
+
"loss": 5.0173,
|
1428 |
+
"step": 190
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 0.18799212598425197,
|
1432 |
+
"grad_norm": 18.24939727783203,
|
1433 |
+
"learning_rate": 1.8489065606361832e-07,
|
1434 |
+
"loss": 4.3915,
|
1435 |
+
"step": 191
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 0.1889763779527559,
|
1439 |
+
"grad_norm": 11.081143379211426,
|
1440 |
+
"learning_rate": 1.8588469184890657e-07,
|
1441 |
+
"loss": 3.4613,
|
1442 |
+
"step": 192
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.18996062992125984,
|
1446 |
+
"grad_norm": 10.244654655456543,
|
1447 |
+
"learning_rate": 1.8687872763419485e-07,
|
1448 |
+
"loss": 3.2005,
|
1449 |
+
"step": 193
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.19094488188976377,
|
1453 |
+
"grad_norm": 10.305020332336426,
|
1454 |
+
"learning_rate": 1.8787276341948313e-07,
|
1455 |
+
"loss": 3.3986,
|
1456 |
+
"step": 194
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 0.1919291338582677,
|
1460 |
+
"grad_norm": 12.405226707458496,
|
1461 |
+
"learning_rate": 1.888667992047714e-07,
|
1462 |
+
"loss": 3.7937,
|
1463 |
+
"step": 195
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.19291338582677164,
|
1467 |
+
"grad_norm": 10.247261047363281,
|
1468 |
+
"learning_rate": 1.898608349900597e-07,
|
1469 |
+
"loss": 3.8981,
|
1470 |
+
"step": 196
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 0.19389763779527558,
|
1474 |
+
"grad_norm": 10.535922050476074,
|
1475 |
+
"learning_rate": 1.9085487077534794e-07,
|
1476 |
+
"loss": 3.7051,
|
1477 |
+
"step": 197
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 0.19488188976377951,
|
1481 |
+
"grad_norm": 9.828015327453613,
|
1482 |
+
"learning_rate": 1.9184890656063622e-07,
|
1483 |
+
"loss": 3.8028,
|
1484 |
+
"step": 198
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.19586614173228348,
|
1488 |
+
"grad_norm": 9.550689697265625,
|
1489 |
+
"learning_rate": 1.9284294234592447e-07,
|
1490 |
+
"loss": 3.3294,
|
1491 |
+
"step": 199
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.1968503937007874,
|
1495 |
+
"grad_norm": 16.766008377075195,
|
1496 |
+
"learning_rate": 1.9383697813121275e-07,
|
1497 |
+
"loss": 4.1252,
|
1498 |
+
"step": 200
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 0.19783464566929135,
|
1502 |
+
"grad_norm": 16.56619644165039,
|
1503 |
+
"learning_rate": 1.94831013916501e-07,
|
1504 |
+
"loss": 4.2564,
|
1505 |
+
"step": 201
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 0.19881889763779528,
|
1509 |
+
"grad_norm": 17.413206100463867,
|
1510 |
+
"learning_rate": 1.958250497017893e-07,
|
1511 |
+
"loss": 3.8258,
|
1512 |
+
"step": 202
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.19980314960629922,
|
1516 |
+
"grad_norm": 10.175580978393555,
|
1517 |
+
"learning_rate": 1.9681908548707756e-07,
|
1518 |
+
"loss": 3.1025,
|
1519 |
+
"step": 203
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 0.20078740157480315,
|
1523 |
+
"grad_norm": 11.58014965057373,
|
1524 |
+
"learning_rate": 1.9781312127236584e-07,
|
1525 |
+
"loss": 3.5038,
|
1526 |
+
"step": 204
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.2017716535433071,
|
1530 |
+
"grad_norm": 9.23029613494873,
|
1531 |
+
"learning_rate": 1.9880715705765412e-07,
|
1532 |
+
"loss": 3.6021,
|
1533 |
+
"step": 205
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.20275590551181102,
|
1537 |
+
"grad_norm": 11.87929630279541,
|
1538 |
+
"learning_rate": 1.9980119284294237e-07,
|
1539 |
+
"loss": 3.7637,
|
1540 |
+
"step": 206
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 0.20374015748031496,
|
1544 |
+
"grad_norm": 10.55318546295166,
|
1545 |
+
"learning_rate": 2.0079522862823065e-07,
|
1546 |
+
"loss": 3.2563,
|
1547 |
+
"step": 207
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 0.2047244094488189,
|
1551 |
+
"grad_norm": 15.530010223388672,
|
1552 |
+
"learning_rate": 2.017892644135189e-07,
|
1553 |
+
"loss": 3.9323,
|
1554 |
+
"step": 208
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.20570866141732283,
|
1558 |
+
"grad_norm": 12.805971145629883,
|
1559 |
+
"learning_rate": 2.027833001988072e-07,
|
1560 |
+
"loss": 3.489,
|
1561 |
+
"step": 209
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 0.20669291338582677,
|
1565 |
+
"grad_norm": 11.042547225952148,
|
1566 |
+
"learning_rate": 2.0377733598409546e-07,
|
1567 |
+
"loss": 3.6549,
|
1568 |
+
"step": 210
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.2076771653543307,
|
1572 |
+
"grad_norm": 13.565040588378906,
|
1573 |
+
"learning_rate": 2.0477137176938374e-07,
|
1574 |
+
"loss": 3.1609,
|
1575 |
+
"step": 211
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.20866141732283464,
|
1579 |
+
"grad_norm": 10.574054718017578,
|
1580 |
+
"learning_rate": 2.05765407554672e-07,
|
1581 |
+
"loss": 3.2467,
|
1582 |
+
"step": 212
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 0.20964566929133857,
|
1586 |
+
"grad_norm": 9.994040489196777,
|
1587 |
+
"learning_rate": 2.0675944333996027e-07,
|
1588 |
+
"loss": 3.4514,
|
1589 |
+
"step": 213
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"epoch": 0.2106299212598425,
|
1593 |
+
"grad_norm": 11.422471046447754,
|
1594 |
+
"learning_rate": 2.0775347912524852e-07,
|
1595 |
+
"loss": 3.4945,
|
1596 |
+
"step": 214
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 0.21161417322834647,
|
1600 |
+
"grad_norm": 13.696518898010254,
|
1601 |
+
"learning_rate": 2.087475149105368e-07,
|
1602 |
+
"loss": 3.5932,
|
1603 |
+
"step": 215
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 0.2125984251968504,
|
1607 |
+
"grad_norm": 9.801803588867188,
|
1608 |
+
"learning_rate": 2.097415506958251e-07,
|
1609 |
+
"loss": 3.2289,
|
1610 |
+
"step": 216
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.21358267716535434,
|
1614 |
+
"grad_norm": 10.710221290588379,
|
1615 |
+
"learning_rate": 2.1073558648111336e-07,
|
1616 |
+
"loss": 3.3279,
|
1617 |
+
"step": 217
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.21456692913385828,
|
1621 |
+
"grad_norm": 12.974212646484375,
|
1622 |
+
"learning_rate": 2.1172962226640164e-07,
|
1623 |
+
"loss": 3.8141,
|
1624 |
+
"step": 218
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 0.2155511811023622,
|
1628 |
+
"grad_norm": 10.196144104003906,
|
1629 |
+
"learning_rate": 2.127236580516899e-07,
|
1630 |
+
"loss": 3.1171,
|
1631 |
+
"step": 219
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 0.21653543307086615,
|
1635 |
+
"grad_norm": 12.518829345703125,
|
1636 |
+
"learning_rate": 2.1371769383697817e-07,
|
1637 |
+
"loss": 3.6287,
|
1638 |
+
"step": 220
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.21751968503937008,
|
1642 |
+
"grad_norm": 18.030723571777344,
|
1643 |
+
"learning_rate": 2.1471172962226642e-07,
|
1644 |
+
"loss": 3.8517,
|
1645 |
+
"step": 221
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 0.21850393700787402,
|
1649 |
+
"grad_norm": 11.197093963623047,
|
1650 |
+
"learning_rate": 2.1570576540755473e-07,
|
1651 |
+
"loss": 3.3836,
|
1652 |
+
"step": 222
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.21948818897637795,
|
1656 |
+
"grad_norm": 10.613561630249023,
|
1657 |
+
"learning_rate": 2.1669980119284298e-07,
|
1658 |
+
"loss": 3.425,
|
1659 |
+
"step": 223
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.2204724409448819,
|
1663 |
+
"grad_norm": 11.70770263671875,
|
1664 |
+
"learning_rate": 2.1769383697813126e-07,
|
1665 |
+
"loss": 3.6246,
|
1666 |
+
"step": 224
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 0.22145669291338582,
|
1670 |
+
"grad_norm": 10.802409172058105,
|
1671 |
+
"learning_rate": 2.186878727634195e-07,
|
1672 |
+
"loss": 3.5682,
|
1673 |
+
"step": 225
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 0.22244094488188976,
|
1677 |
+
"grad_norm": 10.422605514526367,
|
1678 |
+
"learning_rate": 2.196819085487078e-07,
|
1679 |
+
"loss": 3.3034,
|
1680 |
+
"step": 226
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 0.2234251968503937,
|
1684 |
+
"grad_norm": 17.00844383239746,
|
1685 |
+
"learning_rate": 2.2067594433399604e-07,
|
1686 |
+
"loss": 3.9251,
|
1687 |
+
"step": 227
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 0.22440944881889763,
|
1691 |
+
"grad_norm": 11.708518028259277,
|
1692 |
+
"learning_rate": 2.2166998011928432e-07,
|
1693 |
+
"loss": 3.146,
|
1694 |
+
"step": 228
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.22539370078740156,
|
1698 |
+
"grad_norm": 11.237220764160156,
|
1699 |
+
"learning_rate": 2.2266401590457263e-07,
|
1700 |
+
"loss": 3.8859,
|
1701 |
+
"step": 229
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.2263779527559055,
|
1705 |
+
"grad_norm": 10.216686248779297,
|
1706 |
+
"learning_rate": 2.2365805168986088e-07,
|
1707 |
+
"loss": 3.2977,
|
1708 |
+
"step": 230
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 0.22736220472440946,
|
1712 |
+
"grad_norm": 11.36294937133789,
|
1713 |
+
"learning_rate": 2.2465208747514916e-07,
|
1714 |
+
"loss": 3.2664,
|
1715 |
+
"step": 231
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 0.2283464566929134,
|
1719 |
+
"grad_norm": 9.619734764099121,
|
1720 |
+
"learning_rate": 2.256461232604374e-07,
|
1721 |
+
"loss": 3.1275,
|
1722 |
+
"step": 232
|
1723 |
+
},
|
1724 |
+
{
|
1725 |
+
"epoch": 0.22933070866141733,
|
1726 |
+
"grad_norm": 10.229348182678223,
|
1727 |
+
"learning_rate": 2.266401590457257e-07,
|
1728 |
+
"loss": 3.2408,
|
1729 |
+
"step": 233
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 0.23031496062992127,
|
1733 |
+
"grad_norm": 11.304025650024414,
|
1734 |
+
"learning_rate": 2.2763419483101394e-07,
|
1735 |
+
"loss": 2.907,
|
1736 |
+
"step": 234
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.2312992125984252,
|
1740 |
+
"grad_norm": 11.743476867675781,
|
1741 |
+
"learning_rate": 2.2862823061630222e-07,
|
1742 |
+
"loss": 2.9178,
|
1743 |
+
"step": 235
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 0.23228346456692914,
|
1747 |
+
"grad_norm": 12.260607719421387,
|
1748 |
+
"learning_rate": 2.296222664015905e-07,
|
1749 |
+
"loss": 3.324,
|
1750 |
+
"step": 236
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 0.23326771653543307,
|
1754 |
+
"grad_norm": 12.115522384643555,
|
1755 |
+
"learning_rate": 2.3061630218687878e-07,
|
1756 |
+
"loss": 2.9172,
|
1757 |
+
"step": 237
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 0.234251968503937,
|
1761 |
+
"grad_norm": 13.81004810333252,
|
1762 |
+
"learning_rate": 2.3161033797216703e-07,
|
1763 |
+
"loss": 3.4324,
|
1764 |
+
"step": 238
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.23523622047244094,
|
1768 |
+
"grad_norm": 28.633853912353516,
|
1769 |
+
"learning_rate": 2.326043737574553e-07,
|
1770 |
+
"loss": 4.0563,
|
1771 |
+
"step": 239
|
1772 |
+
},
|
1773 |
+
{
|
1774 |
+
"epoch": 0.23622047244094488,
|
1775 |
+
"grad_norm": 10.444801330566406,
|
1776 |
+
"learning_rate": 2.335984095427436e-07,
|
1777 |
+
"loss": 2.8736,
|
1778 |
+
"step": 240
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.2372047244094488,
|
1782 |
+
"grad_norm": 30.760478973388672,
|
1783 |
+
"learning_rate": 2.3459244532803184e-07,
|
1784 |
+
"loss": 4.7174,
|
1785 |
+
"step": 241
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 0.23818897637795275,
|
1789 |
+
"grad_norm": 11.556520462036133,
|
1790 |
+
"learning_rate": 2.3558648111332012e-07,
|
1791 |
+
"loss": 3.2025,
|
1792 |
+
"step": 242
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"epoch": 0.23917322834645668,
|
1796 |
+
"grad_norm": 10.850605010986328,
|
1797 |
+
"learning_rate": 2.365805168986084e-07,
|
1798 |
+
"loss": 2.7835,
|
1799 |
+
"step": 243
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 0.24015748031496062,
|
1803 |
+
"grad_norm": 26.828187942504883,
|
1804 |
+
"learning_rate": 2.3757455268389668e-07,
|
1805 |
+
"loss": 4.3158,
|
1806 |
+
"step": 244
|
1807 |
+
},
|
1808 |
+
{
|
1809 |
+
"epoch": 0.24114173228346455,
|
1810 |
+
"grad_norm": 10.565204620361328,
|
1811 |
+
"learning_rate": 2.385685884691849e-07,
|
1812 |
+
"loss": 2.8619,
|
1813 |
+
"step": 245
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.2421259842519685,
|
1817 |
+
"grad_norm": 11.693890571594238,
|
1818 |
+
"learning_rate": 2.395626242544732e-07,
|
1819 |
+
"loss": 2.5156,
|
1820 |
+
"step": 246
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.24311023622047245,
|
1824 |
+
"grad_norm": 14.487508773803711,
|
1825 |
+
"learning_rate": 2.4055666003976146e-07,
|
1826 |
+
"loss": 3.2144,
|
1827 |
+
"step": 247
|
1828 |
+
},
|
1829 |
+
{
|
1830 |
+
"epoch": 0.2440944881889764,
|
1831 |
+
"grad_norm": 22.58393669128418,
|
1832 |
+
"learning_rate": 2.4155069582504976e-07,
|
1833 |
+
"loss": 3.5927,
|
1834 |
+
"step": 248
|
1835 |
+
},
|
1836 |
+
{
|
1837 |
+
"epoch": 0.24507874015748032,
|
1838 |
+
"grad_norm": 10.880494117736816,
|
1839 |
+
"learning_rate": 2.42544731610338e-07,
|
1840 |
+
"loss": 2.6059,
|
1841 |
+
"step": 249
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 0.24606299212598426,
|
1845 |
+
"grad_norm": 10.982386589050293,
|
1846 |
+
"learning_rate": 2.4353876739562627e-07,
|
1847 |
+
"loss": 2.9758,
|
1848 |
+
"step": 250
|
1849 |
+
},
|
1850 |
+
{
|
1851 |
+
"epoch": 0.2470472440944882,
|
1852 |
+
"grad_norm": 20.552265167236328,
|
1853 |
+
"learning_rate": 2.445328031809146e-07,
|
1854 |
+
"loss": 3.9214,
|
1855 |
+
"step": 251
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 0.24803149606299213,
|
1859 |
+
"grad_norm": 11.680928230285645,
|
1860 |
+
"learning_rate": 2.4552683896620283e-07,
|
1861 |
+
"loss": 3.2892,
|
1862 |
+
"step": 252
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.24901574803149606,
|
1866 |
+
"grad_norm": 10.980914115905762,
|
1867 |
+
"learning_rate": 2.4652087475149113e-07,
|
1868 |
+
"loss": 2.9503,
|
1869 |
+
"step": 253
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.25,
|
1873 |
+
"grad_norm": 11.629937171936035,
|
1874 |
+
"learning_rate": 2.475149105367794e-07,
|
1875 |
+
"loss": 2.5969,
|
1876 |
+
"step": 254
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 0.25098425196850394,
|
1880 |
+
"grad_norm": 11.606547355651855,
|
1881 |
+
"learning_rate": 2.4850894632206764e-07,
|
1882 |
+
"loss": 2.9908,
|
1883 |
+
"step": 255
|
1884 |
+
},
|
1885 |
+
{
|
1886 |
+
"epoch": 0.25196850393700787,
|
1887 |
+
"grad_norm": 10.955612182617188,
|
1888 |
+
"learning_rate": 2.495029821073559e-07,
|
1889 |
+
"loss": 2.8995,
|
1890 |
+
"step": 256
|
1891 |
+
},
|
1892 |
+
{
|
1893 |
+
"epoch": 0.2529527559055118,
|
1894 |
+
"grad_norm": 11.561877250671387,
|
1895 |
+
"learning_rate": 2.5049701789264414e-07,
|
1896 |
+
"loss": 3.124,
|
1897 |
+
"step": 257
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 0.25393700787401574,
|
1901 |
+
"grad_norm": 12.040234565734863,
|
1902 |
+
"learning_rate": 2.5149105367793245e-07,
|
1903 |
+
"loss": 3.1197,
|
1904 |
+
"step": 258
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.2549212598425197,
|
1908 |
+
"grad_norm": 12.25498104095459,
|
1909 |
+
"learning_rate": 2.524850894632207e-07,
|
1910 |
+
"loss": 2.3073,
|
1911 |
+
"step": 259
|
1912 |
+
},
|
1913 |
+
{
|
1914 |
+
"epoch": 0.2559055118110236,
|
1915 |
+
"grad_norm": 9.674198150634766,
|
1916 |
+
"learning_rate": 2.53479125248509e-07,
|
1917 |
+
"loss": 2.8441,
|
1918 |
+
"step": 260
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"epoch": 0.25688976377952755,
|
1922 |
+
"grad_norm": 11.55859661102295,
|
1923 |
+
"learning_rate": 2.5447316103379726e-07,
|
1924 |
+
"loss": 1.9788,
|
1925 |
+
"step": 261
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 0.2578740157480315,
|
1929 |
+
"grad_norm": 12.343245506286621,
|
1930 |
+
"learning_rate": 2.554671968190855e-07,
|
1931 |
+
"loss": 2.1442,
|
1932 |
+
"step": 262
|
1933 |
+
},
|
1934 |
+
{
|
1935 |
+
"epoch": 0.2588582677165354,
|
1936 |
+
"grad_norm": 35.242835998535156,
|
1937 |
+
"learning_rate": 2.564612326043738e-07,
|
1938 |
+
"loss": 4.9015,
|
1939 |
+
"step": 263
|
1940 |
+
},
|
1941 |
+
{
|
1942 |
+
"epoch": 0.25984251968503935,
|
1943 |
+
"grad_norm": 13.894003868103027,
|
1944 |
+
"learning_rate": 2.5745526838966207e-07,
|
1945 |
+
"loss": 2.7866,
|
1946 |
+
"step": 264
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2608267716535433,
|
1950 |
+
"grad_norm": 12.785796165466309,
|
1951 |
+
"learning_rate": 2.5844930417495037e-07,
|
1952 |
+
"loss": 2.4588,
|
1953 |
+
"step": 265
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 0.2618110236220472,
|
1957 |
+
"grad_norm": 13.115778923034668,
|
1958 |
+
"learning_rate": 2.5944333996023857e-07,
|
1959 |
+
"loss": 2.3909,
|
1960 |
+
"step": 266
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 0.26279527559055116,
|
1964 |
+
"grad_norm": 38.795326232910156,
|
1965 |
+
"learning_rate": 2.604373757455269e-07,
|
1966 |
+
"loss": 4.7394,
|
1967 |
+
"step": 267
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 0.2637795275590551,
|
1971 |
+
"grad_norm": 14.078845977783203,
|
1972 |
+
"learning_rate": 2.614314115308152e-07,
|
1973 |
+
"loss": 3.1581,
|
1974 |
+
"step": 268
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 0.26476377952755903,
|
1978 |
+
"grad_norm": 36.33890151977539,
|
1979 |
+
"learning_rate": 2.6242544731610343e-07,
|
1980 |
+
"loss": 3.973,
|
1981 |
+
"step": 269
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 0.265748031496063,
|
1985 |
+
"grad_norm": 32.12986755371094,
|
1986 |
+
"learning_rate": 2.634194831013917e-07,
|
1987 |
+
"loss": 4.1565,
|
1988 |
+
"step": 270
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.26673228346456695,
|
1992 |
+
"grad_norm": 13.353660583496094,
|
1993 |
+
"learning_rate": 2.6441351888667994e-07,
|
1994 |
+
"loss": 2.5183,
|
1995 |
+
"step": 271
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 0.2677165354330709,
|
1999 |
+
"grad_norm": 24.31439208984375,
|
2000 |
+
"learning_rate": 2.6540755467196824e-07,
|
2001 |
+
"loss": 3.614,
|
2002 |
+
"step": 272
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 0.2687007874015748,
|
2006 |
+
"grad_norm": 11.95603084564209,
|
2007 |
+
"learning_rate": 2.664015904572565e-07,
|
2008 |
+
"loss": 2.6858,
|
2009 |
+
"step": 273
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 0.26968503937007876,
|
2013 |
+
"grad_norm": 14.08092975616455,
|
2014 |
+
"learning_rate": 2.6739562624254475e-07,
|
2015 |
+
"loss": 3.1182,
|
2016 |
+
"step": 274
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 0.2706692913385827,
|
2020 |
+
"grad_norm": 11.759414672851562,
|
2021 |
+
"learning_rate": 2.6838966202783305e-07,
|
2022 |
+
"loss": 2.9628,
|
2023 |
+
"step": 275
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 0.27165354330708663,
|
2027 |
+
"grad_norm": 13.239761352539062,
|
2028 |
+
"learning_rate": 2.693836978131213e-07,
|
2029 |
+
"loss": 2.8376,
|
2030 |
+
"step": 276
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.27263779527559057,
|
2034 |
+
"grad_norm": 13.551993370056152,
|
2035 |
+
"learning_rate": 2.703777335984096e-07,
|
2036 |
+
"loss": 2.7858,
|
2037 |
+
"step": 277
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 0.2736220472440945,
|
2041 |
+
"grad_norm": 12.110513687133789,
|
2042 |
+
"learning_rate": 2.7137176938369786e-07,
|
2043 |
+
"loss": 2.1037,
|
2044 |
+
"step": 278
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 0.27460629921259844,
|
2048 |
+
"grad_norm": 14.467287063598633,
|
2049 |
+
"learning_rate": 2.723658051689861e-07,
|
2050 |
+
"loss": 3.0436,
|
2051 |
+
"step": 279
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 0.2755905511811024,
|
2055 |
+
"grad_norm": 17.148061752319336,
|
2056 |
+
"learning_rate": 2.7335984095427437e-07,
|
2057 |
+
"loss": 3.4125,
|
2058 |
+
"step": 280
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 0.2765748031496063,
|
2062 |
+
"grad_norm": 12.052011489868164,
|
2063 |
+
"learning_rate": 2.743538767395627e-07,
|
2064 |
+
"loss": 2.5027,
|
2065 |
+
"step": 281
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 0.27755905511811024,
|
2069 |
+
"grad_norm": 11.502729415893555,
|
2070 |
+
"learning_rate": 2.75347912524851e-07,
|
2071 |
+
"loss": 2.7922,
|
2072 |
+
"step": 282
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.2785433070866142,
|
2076 |
+
"grad_norm": 15.440553665161133,
|
2077 |
+
"learning_rate": 2.763419483101392e-07,
|
2078 |
+
"loss": 2.9762,
|
2079 |
+
"step": 283
|
2080 |
+
},
|
2081 |
+
{
|
2082 |
+
"epoch": 0.2795275590551181,
|
2083 |
+
"grad_norm": 12.604522705078125,
|
2084 |
+
"learning_rate": 2.773359840954275e-07,
|
2085 |
+
"loss": 2.6458,
|
2086 |
+
"step": 284
|
2087 |
+
},
|
2088 |
+
{
|
2089 |
+
"epoch": 0.28051181102362205,
|
2090 |
+
"grad_norm": 12.404953002929688,
|
2091 |
+
"learning_rate": 2.7833001988071574e-07,
|
2092 |
+
"loss": 2.962,
|
2093 |
+
"step": 285
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 0.281496062992126,
|
2097 |
+
"grad_norm": 12.527341842651367,
|
2098 |
+
"learning_rate": 2.7932405566600404e-07,
|
2099 |
+
"loss": 2.5439,
|
2100 |
+
"step": 286
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 0.2824803149606299,
|
2104 |
+
"grad_norm": 12.331761360168457,
|
2105 |
+
"learning_rate": 2.803180914512923e-07,
|
2106 |
+
"loss": 2.8437,
|
2107 |
+
"step": 287
|
2108 |
+
},
|
2109 |
+
{
|
2110 |
+
"epoch": 0.28346456692913385,
|
2111 |
+
"grad_norm": 17.64342498779297,
|
2112 |
+
"learning_rate": 2.8131212723658055e-07,
|
2113 |
+
"loss": 3.2134,
|
2114 |
+
"step": 288
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.2844488188976378,
|
2118 |
+
"grad_norm": 12.74220085144043,
|
2119 |
+
"learning_rate": 2.8230616302186885e-07,
|
2120 |
+
"loss": 2.5655,
|
2121 |
+
"step": 289
|
2122 |
+
},
|
2123 |
+
{
|
2124 |
+
"epoch": 0.2854330708661417,
|
2125 |
+
"grad_norm": 13.071759223937988,
|
2126 |
+
"learning_rate": 2.833001988071571e-07,
|
2127 |
+
"loss": 2.9465,
|
2128 |
+
"step": 290
|
2129 |
+
},
|
2130 |
+
{
|
2131 |
+
"epoch": 0.28641732283464566,
|
2132 |
+
"grad_norm": 12.093460083007812,
|
2133 |
+
"learning_rate": 2.842942345924454e-07,
|
2134 |
+
"loss": 2.4653,
|
2135 |
+
"step": 291
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 0.2874015748031496,
|
2139 |
+
"grad_norm": 18.303346633911133,
|
2140 |
+
"learning_rate": 2.852882703777336e-07,
|
2141 |
+
"loss": 3.1467,
|
2142 |
+
"step": 292
|
2143 |
+
},
|
2144 |
+
{
|
2145 |
+
"epoch": 0.28838582677165353,
|
2146 |
+
"grad_norm": 11.613899230957031,
|
2147 |
+
"learning_rate": 2.862823061630219e-07,
|
2148 |
+
"loss": 2.6551,
|
2149 |
+
"step": 293
|
2150 |
+
},
|
2151 |
+
{
|
2152 |
+
"epoch": 0.28937007874015747,
|
2153 |
+
"grad_norm": 12.590253829956055,
|
2154 |
+
"learning_rate": 2.8727634194831017e-07,
|
2155 |
+
"loss": 2.5098,
|
2156 |
+
"step": 294
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.2903543307086614,
|
2160 |
+
"grad_norm": 13.879076957702637,
|
2161 |
+
"learning_rate": 2.8827037773359847e-07,
|
2162 |
+
"loss": 2.5988,
|
2163 |
+
"step": 295
|
2164 |
+
},
|
2165 |
+
{
|
2166 |
+
"epoch": 0.29133858267716534,
|
2167 |
+
"grad_norm": 23.504112243652344,
|
2168 |
+
"learning_rate": 2.892644135188867e-07,
|
2169 |
+
"loss": 3.778,
|
2170 |
+
"step": 296
|
2171 |
+
},
|
2172 |
+
{
|
2173 |
+
"epoch": 0.29232283464566927,
|
2174 |
+
"grad_norm": 11.794881820678711,
|
2175 |
+
"learning_rate": 2.90258449304175e-07,
|
2176 |
+
"loss": 2.6257,
|
2177 |
+
"step": 297
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 0.2933070866141732,
|
2181 |
+
"grad_norm": 11.491183280944824,
|
2182 |
+
"learning_rate": 2.912524850894633e-07,
|
2183 |
+
"loss": 2.5142,
|
2184 |
+
"step": 298
|
2185 |
+
},
|
2186 |
+
{
|
2187 |
+
"epoch": 0.29429133858267714,
|
2188 |
+
"grad_norm": 11.801483154296875,
|
2189 |
+
"learning_rate": 2.9224652087475153e-07,
|
2190 |
+
"loss": 2.3182,
|
2191 |
+
"step": 299
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 0.2952755905511811,
|
2195 |
+
"grad_norm": 21.28721046447754,
|
2196 |
+
"learning_rate": 2.9324055666003984e-07,
|
2197 |
+
"loss": 3.3505,
|
2198 |
+
"step": 300
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.296259842519685,
|
2202 |
+
"grad_norm": 14.353005409240723,
|
2203 |
+
"learning_rate": 2.9423459244532804e-07,
|
2204 |
+
"loss": 2.9615,
|
2205 |
+
"step": 301
|
2206 |
+
},
|
2207 |
+
{
|
2208 |
+
"epoch": 0.297244094488189,
|
2209 |
+
"grad_norm": 17.378894805908203,
|
2210 |
+
"learning_rate": 2.9522862823061634e-07,
|
2211 |
+
"loss": 2.9136,
|
2212 |
+
"step": 302
|
2213 |
+
},
|
2214 |
+
{
|
2215 |
+
"epoch": 0.29822834645669294,
|
2216 |
+
"grad_norm": 12.216327667236328,
|
2217 |
+
"learning_rate": 2.9622266401590465e-07,
|
2218 |
+
"loss": 2.6192,
|
2219 |
+
"step": 303
|
2220 |
+
},
|
2221 |
+
{
|
2222 |
+
"epoch": 0.2992125984251969,
|
2223 |
+
"grad_norm": 12.561356544494629,
|
2224 |
+
"learning_rate": 2.972166998011929e-07,
|
2225 |
+
"loss": 2.3255,
|
2226 |
+
"step": 304
|
2227 |
+
},
|
2228 |
+
{
|
2229 |
+
"epoch": 0.3001968503937008,
|
2230 |
+
"grad_norm": 15.897427558898926,
|
2231 |
+
"learning_rate": 2.9821073558648115e-07,
|
2232 |
+
"loss": 2.7168,
|
2233 |
+
"step": 305
|
2234 |
+
}
|
2235 |
+
],
|
2236 |
+
"logging_steps": 1,
|
2237 |
+
"max_steps": 3048,
|
2238 |
+
"num_input_tokens_seen": 0,
|
2239 |
+
"num_train_epochs": 3,
|
2240 |
+
"save_steps": 305,
|
2241 |
+
"stateful_callbacks": {
|
2242 |
+
"TrainerControl": {
|
2243 |
+
"args": {
|
2244 |
+
"should_epoch_stop": false,
|
2245 |
+
"should_evaluate": false,
|
2246 |
+
"should_log": false,
|
2247 |
+
"should_save": true,
|
2248 |
+
"should_training_stop": false
|
2249 |
+
},
|
2250 |
+
"attributes": {}
|
2251 |
+
}
|
2252 |
+
},
|
2253 |
+
"total_flos": 0.0,
|
2254 |
+
"train_batch_size": 32,
|
2255 |
+
"trial_name": null,
|
2256 |
+
"trial_params": null
|
2257 |
+
}
|
checkpoint-305/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe192eddc8689ae1ce8dcf2a4147788b9fb7727c69520abe4a56bc54e5c970fa
|
3 |
+
size 5688
|