Training in progress, step 160, checkpoint
Browse files- checkpoint-160/1_AdvancedWeightedPooling/config.json +8 -0
- checkpoint-160/1_AdvancedWeightedPooling/pytorch_model.bin +3 -0
- checkpoint-160/README.md +982 -0
- checkpoint-160/added_tokens.json +3 -0
- checkpoint-160/config.json +35 -0
- checkpoint-160/config_sentence_transformers.json +10 -0
- checkpoint-160/modules.json +14 -0
- checkpoint-160/optimizer.pt +3 -0
- checkpoint-160/pytorch_model.bin +3 -0
- checkpoint-160/rng_state.pth +3 -0
- checkpoint-160/scheduler.pt +3 -0
- checkpoint-160/sentence_bert_config.json +4 -0
- checkpoint-160/special_tokens_map.json +15 -0
- checkpoint-160/spm.model +3 -0
- checkpoint-160/tokenizer.json +0 -0
- checkpoint-160/tokenizer_config.json +58 -0
- checkpoint-160/trainer_state.json +1925 -0
- checkpoint-160/training_args.bin +3 -0
checkpoint-160/1_AdvancedWeightedPooling/config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"embed_dim": 768,
|
3 |
+
"num_heads": 8,
|
4 |
+
"dropout": 0.0,
|
5 |
+
"bias": true,
|
6 |
+
"gate_min": 0.2,
|
7 |
+
"gate_max": 0.8
|
8 |
+
}
|
checkpoint-160/1_AdvancedWeightedPooling/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a424755aae7f58fa33dfecafe67e488934aa1c52ed81c9370768f1e742544cee
|
3 |
+
size 11828367
|
checkpoint-160/README.md
ADDED
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: microsoft/deberta-v3-small
|
3 |
+
datasets:
|
4 |
+
- tals/vitaminc
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: sentence-transformers
|
8 |
+
metrics:
|
9 |
+
- pearson_cosine
|
10 |
+
- spearman_cosine
|
11 |
+
- pearson_manhattan
|
12 |
+
- spearman_manhattan
|
13 |
+
- pearson_euclidean
|
14 |
+
- spearman_euclidean
|
15 |
+
- pearson_dot
|
16 |
+
- spearman_dot
|
17 |
+
- pearson_max
|
18 |
+
- spearman_max
|
19 |
+
- cosine_accuracy
|
20 |
+
- cosine_accuracy_threshold
|
21 |
+
- cosine_f1
|
22 |
+
- cosine_f1_threshold
|
23 |
+
- cosine_precision
|
24 |
+
- cosine_recall
|
25 |
+
- cosine_ap
|
26 |
+
- dot_accuracy
|
27 |
+
- dot_accuracy_threshold
|
28 |
+
- dot_f1
|
29 |
+
- dot_f1_threshold
|
30 |
+
- dot_precision
|
31 |
+
- dot_recall
|
32 |
+
- dot_ap
|
33 |
+
- manhattan_accuracy
|
34 |
+
- manhattan_accuracy_threshold
|
35 |
+
- manhattan_f1
|
36 |
+
- manhattan_f1_threshold
|
37 |
+
- manhattan_precision
|
38 |
+
- manhattan_recall
|
39 |
+
- manhattan_ap
|
40 |
+
- euclidean_accuracy
|
41 |
+
- euclidean_accuracy_threshold
|
42 |
+
- euclidean_f1
|
43 |
+
- euclidean_f1_threshold
|
44 |
+
- euclidean_precision
|
45 |
+
- euclidean_recall
|
46 |
+
- euclidean_ap
|
47 |
+
- max_accuracy
|
48 |
+
- max_accuracy_threshold
|
49 |
+
- max_f1
|
50 |
+
- max_f1_threshold
|
51 |
+
- max_precision
|
52 |
+
- max_recall
|
53 |
+
- max_ap
|
54 |
+
pipeline_tag: sentence-similarity
|
55 |
+
tags:
|
56 |
+
- sentence-transformers
|
57 |
+
- sentence-similarity
|
58 |
+
- feature-extraction
|
59 |
+
- generated_from_trainer
|
60 |
+
- dataset_size:225247
|
61 |
+
- loss:CachedGISTEmbedLoss
|
62 |
+
widget:
|
63 |
+
- source_sentence: how long to grill boneless skinless chicken breasts in oven
|
64 |
+
sentences:
|
65 |
+
- "[ syll. a-ka-hi, ak-ahi ] The baby boy name Akahi is also used as a girl name.\
|
66 |
+
\ Its pronunciation is AA K AA HHiy â\x80 . Akahi's origin, as well as its use,\
|
67 |
+
\ is in the Hawaiian language. The name's meaning is never before. Akahi is infrequently\
|
68 |
+
\ used as a baby name for boys."
|
69 |
+
- October consists of 31 days. November has 30 days. When you add both together
|
70 |
+
they have 61 days.
|
71 |
+
- Heat a grill or grill pan. When the grill is hot, place the chicken on the grill
|
72 |
+
and cook for about 4 minutes per side, or until cooked through. You can also bake
|
73 |
+
the thawed chicken in a 375 degree F oven for 15 minutes, or until cooked through.
|
74 |
+
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
|
75 |
+
mainland China .
|
76 |
+
sentences:
|
77 |
+
- 'More than 3,700 people have died : around 3,100 in mainland China and around
|
78 |
+
550 in all other countries combined .'
|
79 |
+
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
|
80 |
+
275 in other countries .'
|
81 |
+
- more than 4,900 deaths have been attributed to COVID-19 .
|
82 |
+
- source_sentence: Most red algae species live in oceans.
|
83 |
+
sentences:
|
84 |
+
- Where do most red algae species live?
|
85 |
+
- Which layer of the earth is molten?
|
86 |
+
- As a diver descends, the increase in pressure causes the body’s air pockets in
|
87 |
+
the ears and lungs to do what?
|
88 |
+
- source_sentence: Binary compounds of carbon with less electronegative elements are
|
89 |
+
called carbides.
|
90 |
+
sentences:
|
91 |
+
- What are four children born at one birth called?
|
92 |
+
- Binary compounds of carbon with less electronegative elements are called what?
|
93 |
+
- The water cycle involves movement of water between air and what?
|
94 |
+
- source_sentence: What is the basic monetary unit of Iceland?
|
95 |
+
sentences:
|
96 |
+
- 'Ao dai - Vietnamese traditional dress - YouTube Ao dai - Vietnamese traditional
|
97 |
+
dress Want to watch this again later? Sign in to add this video to a playlist.
|
98 |
+
Need to report the video? Sign in to report inappropriate content. Rating is available
|
99 |
+
when the video has been rented. This feature is not available right now. Please
|
100 |
+
try again later. Uploaded on Jul 8, 2009 Simple, yet charming, graceful and elegant,
|
101 |
+
áo dài was designed to praise the slender beauty of Vietnamese women. The dress
|
102 |
+
is a genius combination of ancient and modern. It shows every curve on the girl''s
|
103 |
+
body, creating sexiness for the wearer, yet it still preserves the traditional
|
104 |
+
feminine grace of Vietnamese women with its charming flowing flaps. The simplicity
|
105 |
+
of áo dài makes it convenient and practical, something that other Asian traditional
|
106 |
+
clothes lack. The waist-length slits of the flaps allow every movement of the
|
107 |
+
legs: walking, running, riding a bicycle, climbing a tree, doing high kicks. The
|
108 |
+
looseness of the pants allows comfortability. As a girl walks in áo dài, the movements
|
109 |
+
of the flaps make it seem like she''s not walking but floating in the air. This
|
110 |
+
breath-taking beautiful image of a Vietnamese girl walking in áo dài has been
|
111 |
+
an inspiration for generations of Vietnamese poets, novelists, artists and has
|
112 |
+
left a deep impression for every foreigner who has visited the country. Category'
|
113 |
+
- 'Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary
|
114 |
+
Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary
|
115 |
+
http://www.thefreedictionary.com/Icelandic+monetary+unit Related to Icelandic
|
116 |
+
monetary unit: Icelandic Old Krona ThesaurusAntonymsRelated WordsSynonymsLegend:
|
117 |
+
monetary unit - a unit of money Icelandic krona , krona - the basic unit of money
|
118 |
+
in Iceland eyrir - 100 aurar equal 1 krona in Iceland Want to thank TFD for its
|
119 |
+
existence? Tell a friend about us , add a link to this page, or visit the webmaster''s
|
120 |
+
page for free fun content . Link to this page: Copyright © 2003-2017 Farlex, Inc
|
121 |
+
Disclaimer All content on this website, including dictionary, thesaurus, literature,
|
122 |
+
geography, and other reference data is for informational purposes only. This information
|
123 |
+
should not be considered complete, up to date, and is not intended to be used
|
124 |
+
in place of a visit, consultation, or advice of a legal, medical, or any other
|
125 |
+
professional.'
|
126 |
+
- 'Food-Info.net : E-numbers : E140: Chlorophyll CI 75810, Natural Green 3, Chlorophyll
|
127 |
+
A, Magnesium chlorophyll Origin: Natural green colour, present in all plants and
|
128 |
+
algae. Commercially extracted from nettles, grass and alfalfa. Function & characteristics:'
|
129 |
+
model-index:
|
130 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-small
|
131 |
+
results:
|
132 |
+
- task:
|
133 |
+
type: semantic-similarity
|
134 |
+
name: Semantic Similarity
|
135 |
+
dataset:
|
136 |
+
name: sts test
|
137 |
+
type: sts-test
|
138 |
+
metrics:
|
139 |
+
- type: pearson_cosine
|
140 |
+
value: 0.2853943019391156
|
141 |
+
name: Pearson Cosine
|
142 |
+
- type: spearman_cosine
|
143 |
+
value: 0.31414239162305135
|
144 |
+
name: Spearman Cosine
|
145 |
+
- type: pearson_manhattan
|
146 |
+
value: 0.3110310476615048
|
147 |
+
name: Pearson Manhattan
|
148 |
+
- type: spearman_manhattan
|
149 |
+
value: 0.3366243060620438
|
150 |
+
name: Spearman Manhattan
|
151 |
+
- type: pearson_euclidean
|
152 |
+
value: 0.29405773952219494
|
153 |
+
name: Pearson Euclidean
|
154 |
+
- type: spearman_euclidean
|
155 |
+
value: 0.3141516551339523
|
156 |
+
name: Spearman Euclidean
|
157 |
+
- type: pearson_dot
|
158 |
+
value: 0.28526334639473966
|
159 |
+
name: Pearson Dot
|
160 |
+
- type: spearman_dot
|
161 |
+
value: 0.31380407209449446
|
162 |
+
name: Spearman Dot
|
163 |
+
- type: pearson_max
|
164 |
+
value: 0.3110310476615048
|
165 |
+
name: Pearson Max
|
166 |
+
- type: spearman_max
|
167 |
+
value: 0.3366243060620438
|
168 |
+
name: Spearman Max
|
169 |
+
- task:
|
170 |
+
type: binary-classification
|
171 |
+
name: Binary Classification
|
172 |
+
dataset:
|
173 |
+
name: allNLI dev
|
174 |
+
type: allNLI-dev
|
175 |
+
metrics:
|
176 |
+
- type: cosine_accuracy
|
177 |
+
value: 0.66796875
|
178 |
+
name: Cosine Accuracy
|
179 |
+
- type: cosine_accuracy_threshold
|
180 |
+
value: 0.9767438173294067
|
181 |
+
name: Cosine Accuracy Threshold
|
182 |
+
- type: cosine_f1
|
183 |
+
value: 0.5100182149362477
|
184 |
+
name: Cosine F1
|
185 |
+
- type: cosine_f1_threshold
|
186 |
+
value: 0.8540960550308228
|
187 |
+
name: Cosine F1 Threshold
|
188 |
+
- type: cosine_precision
|
189 |
+
value: 0.3723404255319149
|
190 |
+
name: Cosine Precision
|
191 |
+
- type: cosine_recall
|
192 |
+
value: 0.8092485549132948
|
193 |
+
name: Cosine Recall
|
194 |
+
- type: cosine_ap
|
195 |
+
value: 0.38624833037583434
|
196 |
+
name: Cosine Ap
|
197 |
+
- type: dot_accuracy
|
198 |
+
value: 0.66796875
|
199 |
+
name: Dot Accuracy
|
200 |
+
- type: dot_accuracy_threshold
|
201 |
+
value: 750.345458984375
|
202 |
+
name: Dot Accuracy Threshold
|
203 |
+
- type: dot_f1
|
204 |
+
value: 0.5100182149362477
|
205 |
+
name: Dot F1
|
206 |
+
- type: dot_f1_threshold
|
207 |
+
value: 656.0940551757812
|
208 |
+
name: Dot F1 Threshold
|
209 |
+
- type: dot_precision
|
210 |
+
value: 0.3723404255319149
|
211 |
+
name: Dot Precision
|
212 |
+
- type: dot_recall
|
213 |
+
value: 0.8092485549132948
|
214 |
+
name: Dot Recall
|
215 |
+
- type: dot_ap
|
216 |
+
value: 0.3862261253421553
|
217 |
+
name: Dot Ap
|
218 |
+
- type: manhattan_accuracy
|
219 |
+
value: 0.6640625
|
220 |
+
name: Manhattan Accuracy
|
221 |
+
- type: manhattan_accuracy_threshold
|
222 |
+
value: 78.52637481689453
|
223 |
+
name: Manhattan Accuracy Threshold
|
224 |
+
- type: manhattan_f1
|
225 |
+
value: 0.5062388591800357
|
226 |
+
name: Manhattan F1
|
227 |
+
- type: manhattan_f1_threshold
|
228 |
+
value: 285.7745361328125
|
229 |
+
name: Manhattan F1 Threshold
|
230 |
+
- type: manhattan_precision
|
231 |
+
value: 0.36597938144329895
|
232 |
+
name: Manhattan Precision
|
233 |
+
- type: manhattan_recall
|
234 |
+
value: 0.8208092485549133
|
235 |
+
name: Manhattan Recall
|
236 |
+
- type: manhattan_ap
|
237 |
+
value: 0.3898187083180651
|
238 |
+
name: Manhattan Ap
|
239 |
+
- type: euclidean_accuracy
|
240 |
+
value: 0.66796875
|
241 |
+
name: Euclidean Accuracy
|
242 |
+
- type: euclidean_accuracy_threshold
|
243 |
+
value: 5.977196216583252
|
244 |
+
name: Euclidean Accuracy Threshold
|
245 |
+
- type: euclidean_f1
|
246 |
+
value: 0.5100182149362477
|
247 |
+
name: Euclidean F1
|
248 |
+
- type: euclidean_f1_threshold
|
249 |
+
value: 14.971920013427734
|
250 |
+
name: Euclidean F1 Threshold
|
251 |
+
- type: euclidean_precision
|
252 |
+
value: 0.3723404255319149
|
253 |
+
name: Euclidean Precision
|
254 |
+
- type: euclidean_recall
|
255 |
+
value: 0.8092485549132948
|
256 |
+
name: Euclidean Recall
|
257 |
+
- type: euclidean_ap
|
258 |
+
value: 0.38624380046547035
|
259 |
+
name: Euclidean Ap
|
260 |
+
- type: max_accuracy
|
261 |
+
value: 0.66796875
|
262 |
+
name: Max Accuracy
|
263 |
+
- type: max_accuracy_threshold
|
264 |
+
value: 750.345458984375
|
265 |
+
name: Max Accuracy Threshold
|
266 |
+
- type: max_f1
|
267 |
+
value: 0.5100182149362477
|
268 |
+
name: Max F1
|
269 |
+
- type: max_f1_threshold
|
270 |
+
value: 656.0940551757812
|
271 |
+
name: Max F1 Threshold
|
272 |
+
- type: max_precision
|
273 |
+
value: 0.3723404255319149
|
274 |
+
name: Max Precision
|
275 |
+
- type: max_recall
|
276 |
+
value: 0.8208092485549133
|
277 |
+
name: Max Recall
|
278 |
+
- type: max_ap
|
279 |
+
value: 0.3898187083180651
|
280 |
+
name: Max Ap
|
281 |
+
- task:
|
282 |
+
type: binary-classification
|
283 |
+
name: Binary Classification
|
284 |
+
dataset:
|
285 |
+
name: Qnli dev
|
286 |
+
type: Qnli-dev
|
287 |
+
metrics:
|
288 |
+
- type: cosine_accuracy
|
289 |
+
value: 0.62890625
|
290 |
+
name: Cosine Accuracy
|
291 |
+
- type: cosine_accuracy_threshold
|
292 |
+
value: 0.9045097827911377
|
293 |
+
name: Cosine Accuracy Threshold
|
294 |
+
- type: cosine_f1
|
295 |
+
value: 0.6397415185783522
|
296 |
+
name: Cosine F1
|
297 |
+
- type: cosine_f1_threshold
|
298 |
+
value: 0.8351442813873291
|
299 |
+
name: Cosine F1 Threshold
|
300 |
+
- type: cosine_precision
|
301 |
+
value: 0.5169712793733682
|
302 |
+
name: Cosine Precision
|
303 |
+
- type: cosine_recall
|
304 |
+
value: 0.8389830508474576
|
305 |
+
name: Cosine Recall
|
306 |
+
- type: cosine_ap
|
307 |
+
value: 0.6193527955003784
|
308 |
+
name: Cosine Ap
|
309 |
+
- type: dot_accuracy
|
310 |
+
value: 0.62890625
|
311 |
+
name: Dot Accuracy
|
312 |
+
- type: dot_accuracy_threshold
|
313 |
+
value: 694.7778930664062
|
314 |
+
name: Dot Accuracy Threshold
|
315 |
+
- type: dot_f1
|
316 |
+
value: 0.6397415185783522
|
317 |
+
name: Dot F1
|
318 |
+
- type: dot_f1_threshold
|
319 |
+
value: 641.4969482421875
|
320 |
+
name: Dot F1 Threshold
|
321 |
+
- type: dot_precision
|
322 |
+
value: 0.5169712793733682
|
323 |
+
name: Dot Precision
|
324 |
+
- type: dot_recall
|
325 |
+
value: 0.8389830508474576
|
326 |
+
name: Dot Recall
|
327 |
+
- type: dot_ap
|
328 |
+
value: 0.6194150916988216
|
329 |
+
name: Dot Ap
|
330 |
+
- type: manhattan_accuracy
|
331 |
+
value: 0.646484375
|
332 |
+
name: Manhattan Accuracy
|
333 |
+
- type: manhattan_accuracy_threshold
|
334 |
+
value: 245.2164306640625
|
335 |
+
name: Manhattan Accuracy Threshold
|
336 |
+
- type: manhattan_f1
|
337 |
+
value: 0.6521060842433698
|
338 |
+
name: Manhattan F1
|
339 |
+
- type: manhattan_f1_threshold
|
340 |
+
value: 303.317626953125
|
341 |
+
name: Manhattan F1 Threshold
|
342 |
+
- type: manhattan_precision
|
343 |
+
value: 0.5160493827160494
|
344 |
+
name: Manhattan Precision
|
345 |
+
- type: manhattan_recall
|
346 |
+
value: 0.885593220338983
|
347 |
+
name: Manhattan Recall
|
348 |
+
- type: manhattan_ap
|
349 |
+
value: 0.6417015148414534
|
350 |
+
name: Manhattan Ap
|
351 |
+
- type: euclidean_accuracy
|
352 |
+
value: 0.62890625
|
353 |
+
name: Euclidean Accuracy
|
354 |
+
- type: euclidean_accuracy_threshold
|
355 |
+
value: 12.111844062805176
|
356 |
+
name: Euclidean Accuracy Threshold
|
357 |
+
- type: euclidean_f1
|
358 |
+
value: 0.6397415185783522
|
359 |
+
name: Euclidean F1
|
360 |
+
- type: euclidean_f1_threshold
|
361 |
+
value: 15.914146423339844
|
362 |
+
name: Euclidean F1 Threshold
|
363 |
+
- type: euclidean_precision
|
364 |
+
value: 0.5169712793733682
|
365 |
+
name: Euclidean Precision
|
366 |
+
- type: euclidean_recall
|
367 |
+
value: 0.8389830508474576
|
368 |
+
name: Euclidean Recall
|
369 |
+
- type: euclidean_ap
|
370 |
+
value: 0.6193576186776235
|
371 |
+
name: Euclidean Ap
|
372 |
+
- type: max_accuracy
|
373 |
+
value: 0.646484375
|
374 |
+
name: Max Accuracy
|
375 |
+
- type: max_accuracy_threshold
|
376 |
+
value: 694.7778930664062
|
377 |
+
name: Max Accuracy Threshold
|
378 |
+
- type: max_f1
|
379 |
+
value: 0.6521060842433698
|
380 |
+
name: Max F1
|
381 |
+
- type: max_f1_threshold
|
382 |
+
value: 641.4969482421875
|
383 |
+
name: Max F1 Threshold
|
384 |
+
- type: max_precision
|
385 |
+
value: 0.5169712793733682
|
386 |
+
name: Max Precision
|
387 |
+
- type: max_recall
|
388 |
+
value: 0.885593220338983
|
389 |
+
name: Max Recall
|
390 |
+
- type: max_ap
|
391 |
+
value: 0.6417015148414534
|
392 |
+
name: Max Ap
|
393 |
+
---
|
394 |
+
|
395 |
+
# SentenceTransformer based on microsoft/deberta-v3-small
|
396 |
+
|
397 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
398 |
+
|
399 |
+
## Model Details
|
400 |
+
|
401 |
+
### Model Description
|
402 |
+
- **Model Type:** Sentence Transformer
|
403 |
+
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
|
404 |
+
- **Maximum Sequence Length:** 512 tokens
|
405 |
+
- **Output Dimensionality:** 768 tokens
|
406 |
+
- **Similarity Function:** Cosine Similarity
|
407 |
+
<!-- - **Training Dataset:** Unknown -->
|
408 |
+
- **Language:** en
|
409 |
+
<!-- - **License:** Unknown -->
|
410 |
+
|
411 |
+
### Model Sources
|
412 |
+
|
413 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
414 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
415 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
416 |
+
|
417 |
+
### Full Model Architecture
|
418 |
+
|
419 |
+
```
|
420 |
+
SentenceTransformer(
|
421 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
|
422 |
+
(1): AdvancedWeightedPooling(
|
423 |
+
(linear_cls): Linear(in_features=768, out_features=768, bias=True)
|
424 |
+
(mha): MultiheadAttention(
|
425 |
+
(out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
|
426 |
+
)
|
427 |
+
(layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
428 |
+
(layernorm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
429 |
+
)
|
430 |
+
)
|
431 |
+
```
|
432 |
+
|
433 |
+
## Usage
|
434 |
+
|
435 |
+
### Direct Usage (Sentence Transformers)
|
436 |
+
|
437 |
+
First install the Sentence Transformers library:
|
438 |
+
|
439 |
+
```bash
|
440 |
+
pip install -U sentence-transformers
|
441 |
+
```
|
442 |
+
|
443 |
+
Then you can load this model and run inference.
|
444 |
+
```python
|
445 |
+
from sentence_transformers import SentenceTransformer
|
446 |
+
|
447 |
+
# Download from the 🤗 Hub
|
448 |
+
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp")
|
449 |
+
# Run inference
|
450 |
+
sentences = [
|
451 |
+
'What is the basic monetary unit of Iceland?',
|
452 |
+
"Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary Icelandic monetary unit - definition of Icelandic monetary unit by The Free Dictionary http://www.thefreedictionary.com/Icelandic+monetary+unit Related to Icelandic monetary unit: Icelandic Old Krona ThesaurusAntonymsRelated WordsSynonymsLegend: monetary unit - a unit of money Icelandic krona , krona - the basic unit of money in Iceland eyrir - 100 aurar equal 1 krona in Iceland Want to thank TFD for its existence? Tell a friend about us , add a link to this page, or visit the webmaster's page for free fun content . Link to this page: Copyright © 2003-2017 Farlex, Inc Disclaimer All content on this website, including dictionary, thesaurus, literature, geography, and other reference data is for informational purposes only. This information should not be considered complete, up to date, and is not intended to be used in place of a visit, consultation, or advice of a legal, medical, or any other professional.",
|
453 |
+
'Food-Info.net : E-numbers : E140: Chlorophyll CI 75810, Natural Green 3, Chlorophyll A, Magnesium chlorophyll Origin: Natural green colour, present in all plants and algae. Commercially extracted from nettles, grass and alfalfa. Function & characteristics:',
|
454 |
+
]
|
455 |
+
embeddings = model.encode(sentences)
|
456 |
+
print(embeddings.shape)
|
457 |
+
# [3, 768]
|
458 |
+
|
459 |
+
# Get the similarity scores for the embeddings
|
460 |
+
similarities = model.similarity(embeddings, embeddings)
|
461 |
+
print(similarities.shape)
|
462 |
+
# [3, 3]
|
463 |
+
```
|
464 |
+
|
465 |
+
<!--
|
466 |
+
### Direct Usage (Transformers)
|
467 |
+
|
468 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
469 |
+
|
470 |
+
</details>
|
471 |
+
-->
|
472 |
+
|
473 |
+
<!--
|
474 |
+
### Downstream Usage (Sentence Transformers)
|
475 |
+
|
476 |
+
You can finetune this model on your own dataset.
|
477 |
+
|
478 |
+
<details><summary>Click to expand</summary>
|
479 |
+
|
480 |
+
</details>
|
481 |
+
-->
|
482 |
+
|
483 |
+
<!--
|
484 |
+
### Out-of-Scope Use
|
485 |
+
|
486 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
487 |
+
-->
|
488 |
+
|
489 |
+
## Evaluation
|
490 |
+
|
491 |
+
### Metrics
|
492 |
+
|
493 |
+
#### Semantic Similarity
|
494 |
+
* Dataset: `sts-test`
|
495 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
496 |
+
|
497 |
+
| Metric | Value |
|
498 |
+
|:--------------------|:-----------|
|
499 |
+
| pearson_cosine | 0.2854 |
|
500 |
+
| **spearman_cosine** | **0.3141** |
|
501 |
+
| pearson_manhattan | 0.311 |
|
502 |
+
| spearman_manhattan | 0.3366 |
|
503 |
+
| pearson_euclidean | 0.2941 |
|
504 |
+
| spearman_euclidean | 0.3142 |
|
505 |
+
| pearson_dot | 0.2853 |
|
506 |
+
| spearman_dot | 0.3138 |
|
507 |
+
| pearson_max | 0.311 |
|
508 |
+
| spearman_max | 0.3366 |
|
509 |
+
|
510 |
+
#### Binary Classification
|
511 |
+
* Dataset: `allNLI-dev`
|
512 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
513 |
+
|
514 |
+
| Metric | Value |
|
515 |
+
|:-----------------------------|:-----------|
|
516 |
+
| cosine_accuracy | 0.668 |
|
517 |
+
| cosine_accuracy_threshold | 0.9767 |
|
518 |
+
| cosine_f1 | 0.51 |
|
519 |
+
| cosine_f1_threshold | 0.8541 |
|
520 |
+
| cosine_precision | 0.3723 |
|
521 |
+
| cosine_recall | 0.8092 |
|
522 |
+
| cosine_ap | 0.3862 |
|
523 |
+
| dot_accuracy | 0.668 |
|
524 |
+
| dot_accuracy_threshold | 750.3455 |
|
525 |
+
| dot_f1 | 0.51 |
|
526 |
+
| dot_f1_threshold | 656.0941 |
|
527 |
+
| dot_precision | 0.3723 |
|
528 |
+
| dot_recall | 0.8092 |
|
529 |
+
| dot_ap | 0.3862 |
|
530 |
+
| manhattan_accuracy | 0.6641 |
|
531 |
+
| manhattan_accuracy_threshold | 78.5264 |
|
532 |
+
| manhattan_f1 | 0.5062 |
|
533 |
+
| manhattan_f1_threshold | 285.7745 |
|
534 |
+
| manhattan_precision | 0.366 |
|
535 |
+
| manhattan_recall | 0.8208 |
|
536 |
+
| manhattan_ap | 0.3898 |
|
537 |
+
| euclidean_accuracy | 0.668 |
|
538 |
+
| euclidean_accuracy_threshold | 5.9772 |
|
539 |
+
| euclidean_f1 | 0.51 |
|
540 |
+
| euclidean_f1_threshold | 14.9719 |
|
541 |
+
| euclidean_precision | 0.3723 |
|
542 |
+
| euclidean_recall | 0.8092 |
|
543 |
+
| euclidean_ap | 0.3862 |
|
544 |
+
| max_accuracy | 0.668 |
|
545 |
+
| max_accuracy_threshold | 750.3455 |
|
546 |
+
| max_f1 | 0.51 |
|
547 |
+
| max_f1_threshold | 656.0941 |
|
548 |
+
| max_precision | 0.3723 |
|
549 |
+
| max_recall | 0.8208 |
|
550 |
+
| **max_ap** | **0.3898** |
|
551 |
+
|
552 |
+
#### Binary Classification
|
553 |
+
* Dataset: `Qnli-dev`
|
554 |
+
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
|
555 |
+
|
556 |
+
| Metric | Value |
|
557 |
+
|:-----------------------------|:-----------|
|
558 |
+
| cosine_accuracy | 0.6289 |
|
559 |
+
| cosine_accuracy_threshold | 0.9045 |
|
560 |
+
| cosine_f1 | 0.6397 |
|
561 |
+
| cosine_f1_threshold | 0.8351 |
|
562 |
+
| cosine_precision | 0.517 |
|
563 |
+
| cosine_recall | 0.839 |
|
564 |
+
| cosine_ap | 0.6194 |
|
565 |
+
| dot_accuracy | 0.6289 |
|
566 |
+
| dot_accuracy_threshold | 694.7779 |
|
567 |
+
| dot_f1 | 0.6397 |
|
568 |
+
| dot_f1_threshold | 641.4969 |
|
569 |
+
| dot_precision | 0.517 |
|
570 |
+
| dot_recall | 0.839 |
|
571 |
+
| dot_ap | 0.6194 |
|
572 |
+
| manhattan_accuracy | 0.6465 |
|
573 |
+
| manhattan_accuracy_threshold | 245.2164 |
|
574 |
+
| manhattan_f1 | 0.6521 |
|
575 |
+
| manhattan_f1_threshold | 303.3176 |
|
576 |
+
| manhattan_precision | 0.516 |
|
577 |
+
| manhattan_recall | 0.8856 |
|
578 |
+
| manhattan_ap | 0.6417 |
|
579 |
+
| euclidean_accuracy | 0.6289 |
|
580 |
+
| euclidean_accuracy_threshold | 12.1118 |
|
581 |
+
| euclidean_f1 | 0.6397 |
|
582 |
+
| euclidean_f1_threshold | 15.9141 |
|
583 |
+
| euclidean_precision | 0.517 |
|
584 |
+
| euclidean_recall | 0.839 |
|
585 |
+
| euclidean_ap | 0.6194 |
|
586 |
+
| max_accuracy | 0.6465 |
|
587 |
+
| max_accuracy_threshold | 694.7779 |
|
588 |
+
| max_f1 | 0.6521 |
|
589 |
+
| max_f1_threshold | 641.4969 |
|
590 |
+
| max_precision | 0.517 |
|
591 |
+
| max_recall | 0.8856 |
|
592 |
+
| **max_ap** | **0.6417** |
|
593 |
+
|
594 |
+
<!--
|
595 |
+
## Bias, Risks and Limitations
|
596 |
+
|
597 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
598 |
+
-->
|
599 |
+
|
600 |
+
<!--
|
601 |
+
### Recommendations
|
602 |
+
|
603 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
604 |
+
-->
|
605 |
+
|
606 |
+
## Training Details
|
607 |
+
|
608 |
+
### Evaluation Dataset
|
609 |
+
|
610 |
+
#### vitaminc-pairs
|
611 |
+
|
612 |
+
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
|
613 |
+
* Size: 128 evaluation samples
|
614 |
+
* Columns: <code>claim</code> and <code>evidence</code>
|
615 |
+
* Approximate statistics based on the first 128 samples:
|
616 |
+
| | claim | evidence |
|
617 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
618 |
+
| type | string | string |
|
619 |
+
| details | <ul><li>min: 9 tokens</li><li>mean: 21.42 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 35.55 tokens</li><li>max: 79 tokens</li></ul> |
|
620 |
+
* Samples:
|
621 |
+
| claim | evidence |
|
622 |
+
|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
623 |
+
| <code>Dragon Con had over 5000 guests .</code> | <code>Among the more than 6000 guests and musical performers at the 2009 convention were such notables as Patrick Stewart , William Shatner , Leonard Nimoy , Terry Gilliam , Bruce Boxleitner , James Marsters , and Mary McDonnell .</code> |
|
624 |
+
| <code>COVID-19 has reached more than 185 countries .</code> | <code>As of , more than cases of COVID-19 have been reported in more than 190 countries and 200 territories , resulting in more than deaths .</code> |
|
625 |
+
| <code>In March , Italy had 3.6x times more cases of coronavirus than China .</code> | <code>As of 12 March , among nations with at least one million citizens , Italy has the world 's highest per capita rate of positive coronavirus cases at 206.1 cases per million people ( 3.6x times the rate of China ) and is the country with the second-highest number of positive cases as well as of deaths in the world , after China .</code> |
|
626 |
+
* Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters:
|
627 |
+
```json
|
628 |
+
{'guide': SentenceTransformer(
|
629 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
630 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
631 |
+
(2): Normalize()
|
632 |
+
), 'temperature': 0.025}
|
633 |
+
```
|
634 |
+
|
635 |
+
### Training Hyperparameters
|
636 |
+
#### Non-Default Hyperparameters
|
637 |
+
|
638 |
+
- `eval_strategy`: steps
|
639 |
+
- `per_device_train_batch_size`: 42
|
640 |
+
- `per_device_eval_batch_size`: 128
|
641 |
+
- `gradient_accumulation_steps`: 2
|
642 |
+
- `learning_rate`: 3e-05
|
643 |
+
- `weight_decay`: 0.001
|
644 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
645 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
|
646 |
+
- `warmup_ratio`: 0.25
|
647 |
+
- `save_safetensors`: False
|
648 |
+
- `fp16`: True
|
649 |
+
- `push_to_hub`: True
|
650 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp
|
651 |
+
- `hub_strategy`: all_checkpoints
|
652 |
+
- `batch_sampler`: no_duplicates
|
653 |
+
|
654 |
+
#### All Hyperparameters
|
655 |
+
<details><summary>Click to expand</summary>
|
656 |
+
|
657 |
+
- `overwrite_output_dir`: False
|
658 |
+
- `do_predict`: False
|
659 |
+
- `eval_strategy`: steps
|
660 |
+
- `prediction_loss_only`: True
|
661 |
+
- `per_device_train_batch_size`: 42
|
662 |
+
- `per_device_eval_batch_size`: 128
|
663 |
+
- `per_gpu_train_batch_size`: None
|
664 |
+
- `per_gpu_eval_batch_size`: None
|
665 |
+
- `gradient_accumulation_steps`: 2
|
666 |
+
- `eval_accumulation_steps`: None
|
667 |
+
- `torch_empty_cache_steps`: None
|
668 |
+
- `learning_rate`: 3e-05
|
669 |
+
- `weight_decay`: 0.001
|
670 |
+
- `adam_beta1`: 0.9
|
671 |
+
- `adam_beta2`: 0.999
|
672 |
+
- `adam_epsilon`: 1e-08
|
673 |
+
- `max_grad_norm`: 1.0
|
674 |
+
- `num_train_epochs`: 3
|
675 |
+
- `max_steps`: -1
|
676 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
677 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 0.5, 'min_lr': 1e-05}
|
678 |
+
- `warmup_ratio`: 0.25
|
679 |
+
- `warmup_steps`: 0
|
680 |
+
- `log_level`: passive
|
681 |
+
- `log_level_replica`: warning
|
682 |
+
- `log_on_each_node`: True
|
683 |
+
- `logging_nan_inf_filter`: True
|
684 |
+
- `save_safetensors`: False
|
685 |
+
- `save_on_each_node`: False
|
686 |
+
- `save_only_model`: False
|
687 |
+
- `restore_callback_states_from_checkpoint`: False
|
688 |
+
- `no_cuda`: False
|
689 |
+
- `use_cpu`: False
|
690 |
+
- `use_mps_device`: False
|
691 |
+
- `seed`: 42
|
692 |
+
- `data_seed`: None
|
693 |
+
- `jit_mode_eval`: False
|
694 |
+
- `use_ipex`: False
|
695 |
+
- `bf16`: False
|
696 |
+
- `fp16`: True
|
697 |
+
- `fp16_opt_level`: O1
|
698 |
+
- `half_precision_backend`: auto
|
699 |
+
- `bf16_full_eval`: False
|
700 |
+
- `fp16_full_eval`: False
|
701 |
+
- `tf32`: None
|
702 |
+
- `local_rank`: 0
|
703 |
+
- `ddp_backend`: None
|
704 |
+
- `tpu_num_cores`: None
|
705 |
+
- `tpu_metrics_debug`: False
|
706 |
+
- `debug`: []
|
707 |
+
- `dataloader_drop_last`: False
|
708 |
+
- `dataloader_num_workers`: 0
|
709 |
+
- `dataloader_prefetch_factor`: None
|
710 |
+
- `past_index`: -1
|
711 |
+
- `disable_tqdm`: False
|
712 |
+
- `remove_unused_columns`: True
|
713 |
+
- `label_names`: None
|
714 |
+
- `load_best_model_at_end`: False
|
715 |
+
- `ignore_data_skip`: False
|
716 |
+
- `fsdp`: []
|
717 |
+
- `fsdp_min_num_params`: 0
|
718 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
719 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
720 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
721 |
+
- `deepspeed`: None
|
722 |
+
- `label_smoothing_factor`: 0.0
|
723 |
+
- `optim`: adamw_torch
|
724 |
+
- `optim_args`: None
|
725 |
+
- `adafactor`: False
|
726 |
+
- `group_by_length`: False
|
727 |
+
- `length_column_name`: length
|
728 |
+
- `ddp_find_unused_parameters`: None
|
729 |
+
- `ddp_bucket_cap_mb`: None
|
730 |
+
- `ddp_broadcast_buffers`: False
|
731 |
+
- `dataloader_pin_memory`: True
|
732 |
+
- `dataloader_persistent_workers`: False
|
733 |
+
- `skip_memory_metrics`: True
|
734 |
+
- `use_legacy_prediction_loop`: False
|
735 |
+
- `push_to_hub`: True
|
736 |
+
- `resume_from_checkpoint`: None
|
737 |
+
- `hub_model_id`: bobox/DeBERTa3-s-CustomPooling-test1-checkpoints-tmp
|
738 |
+
- `hub_strategy`: all_checkpoints
|
739 |
+
- `hub_private_repo`: False
|
740 |
+
- `hub_always_push`: False
|
741 |
+
- `gradient_checkpointing`: False
|
742 |
+
- `gradient_checkpointing_kwargs`: None
|
743 |
+
- `include_inputs_for_metrics`: False
|
744 |
+
- `eval_do_concat_batches`: True
|
745 |
+
- `fp16_backend`: auto
|
746 |
+
- `push_to_hub_model_id`: None
|
747 |
+
- `push_to_hub_organization`: None
|
748 |
+
- `mp_parameters`:
|
749 |
+
- `auto_find_batch_size`: False
|
750 |
+
- `full_determinism`: False
|
751 |
+
- `torchdynamo`: None
|
752 |
+
- `ray_scope`: last
|
753 |
+
- `ddp_timeout`: 1800
|
754 |
+
- `torch_compile`: False
|
755 |
+
- `torch_compile_backend`: None
|
756 |
+
- `torch_compile_mode`: None
|
757 |
+
- `dispatch_batches`: None
|
758 |
+
- `split_batches`: None
|
759 |
+
- `include_tokens_per_second`: False
|
760 |
+
- `include_num_input_tokens_seen`: False
|
761 |
+
- `neftune_noise_alpha`: None
|
762 |
+
- `optim_target_modules`: None
|
763 |
+
- `batch_eval_metrics`: False
|
764 |
+
- `eval_on_start`: False
|
765 |
+
- `use_liger_kernel`: False
|
766 |
+
- `eval_use_gather_object`: False
|
767 |
+
- `batch_sampler`: no_duplicates
|
768 |
+
- `multi_dataset_batch_sampler`: proportional
|
769 |
+
|
770 |
+
</details>
|
771 |
+
|
772 |
+
### Training Logs
|
773 |
+
<details><summary>Click to expand</summary>
|
774 |
+
|
775 |
+
| Epoch | Step | Training Loss | vitaminc-pairs loss | negation-triplets loss | scitail-pairs-pos loss | scitail-pairs-qa loss | xsum-pairs loss | sciq pairs loss | qasc pairs loss | openbookqa pairs loss | msmarco pairs loss | nq pairs loss | trivia pairs loss | gooaq pairs loss | paws-pos loss | global dataset loss | sts-test_spearman_cosine | allNLI-dev_max_ap | Qnli-dev_max_ap |
|
776 |
+
|:------:|:----:|:-------------:|:-------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------:|:---------------:|:---------------:|:---------------------:|:------------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:-------------------:|:------------------------:|:-----------------:|:---------------:|
|
777 |
+
| 0.0009 | 1 | 5.8564 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
778 |
+
| 0.0018 | 2 | 7.1716 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
779 |
+
| 0.0027 | 3 | 5.9095 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
780 |
+
| 0.0035 | 4 | 5.0841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
781 |
+
| 0.0044 | 5 | 4.0184 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
782 |
+
| 0.0053 | 6 | 6.2191 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
783 |
+
| 0.0062 | 7 | 5.6124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
784 |
+
| 0.0071 | 8 | 3.9544 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
785 |
+
| 0.0080 | 9 | 4.7149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
786 |
+
| 0.0088 | 10 | 4.9616 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
787 |
+
| 0.0097 | 11 | 5.2794 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
788 |
+
| 0.0106 | 12 | 8.8704 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
789 |
+
| 0.0115 | 13 | 6.0707 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
790 |
+
| 0.0124 | 14 | 5.4071 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
791 |
+
| 0.0133 | 15 | 6.9104 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
792 |
+
| 0.0142 | 16 | 6.0276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
793 |
+
| 0.0150 | 17 | 6.737 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
794 |
+
| 0.0159 | 18 | 6.5354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
795 |
+
| 0.0168 | 19 | 5.206 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
796 |
+
| 0.0177 | 20 | 5.2469 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
797 |
+
| 0.0186 | 21 | 5.3771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
798 |
+
| 0.0195 | 22 | 4.979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
799 |
+
| 0.0204 | 23 | 4.7909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
800 |
+
| 0.0212 | 24 | 4.9086 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
801 |
+
| 0.0221 | 25 | 4.8826 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
802 |
+
| 0.0230 | 26 | 8.2266 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
803 |
+
| 0.0239 | 27 | 8.3024 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
804 |
+
| 0.0248 | 28 | 5.8745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
805 |
+
| 0.0257 | 29 | 4.7298 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
806 |
+
| 0.0265 | 30 | 5.4614 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
807 |
+
| 0.0274 | 31 | 5.8594 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
808 |
+
| 0.0283 | 32 | 5.2401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
809 |
+
| 0.0292 | 33 | 5.1579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
810 |
+
| 0.0301 | 34 | 5.2181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
811 |
+
| 0.0310 | 35 | 4.6328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
812 |
+
| 0.0319 | 36 | 2.121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
813 |
+
| 0.0327 | 37 | 5.9026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
814 |
+
| 0.0336 | 38 | 7.3796 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
815 |
+
| 0.0345 | 39 | 5.5361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
816 |
+
| 0.0354 | 40 | 4.0243 | 2.9018 | 5.6903 | 2.1136 | 2.8052 | 6.5831 | 0.8882 | 4.1148 | 5.0966 | 10.3911 | 10.9032 | 7.1904 | 8.1935 | 1.3943 | 5.6716 | 0.1879 | 0.3385 | 0.5781 |
|
817 |
+
| 0.0363 | 41 | 4.9072 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
818 |
+
| 0.0372 | 42 | 3.4439 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
819 |
+
| 0.0381 | 43 | 4.9787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
820 |
+
| 0.0389 | 44 | 5.8318 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
821 |
+
| 0.0398 | 45 | 5.3226 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
822 |
+
| 0.0407 | 46 | 5.1181 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
823 |
+
| 0.0416 | 47 | 4.7834 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
824 |
+
| 0.0425 | 48 | 6.6303 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
825 |
+
| 0.0434 | 49 | 5.8171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
826 |
+
| 0.0442 | 50 | 5.1962 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
827 |
+
| 0.0451 | 51 | 5.2096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
828 |
+
| 0.0460 | 52 | 5.0943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
829 |
+
| 0.0469 | 53 | 4.9038 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
830 |
+
| 0.0478 | 54 | 4.6479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
831 |
+
| 0.0487 | 55 | 5.5098 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
832 |
+
| 0.0496 | 56 | 4.6979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
833 |
+
| 0.0504 | 57 | 3.1969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
834 |
+
| 0.0513 | 58 | 4.4127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
835 |
+
| 0.0522 | 59 | 3.7746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
836 |
+
| 0.0531 | 60 | 4.5378 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
837 |
+
| 0.0540 | 61 | 5.0209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
838 |
+
| 0.0549 | 62 | 6.5936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
839 |
+
| 0.0558 | 63 | 4.2315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
840 |
+
| 0.0566 | 64 | 6.4269 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
841 |
+
| 0.0575 | 65 | 4.2644 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
842 |
+
| 0.0584 | 66 | 5.1388 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
843 |
+
| 0.0593 | 67 | 5.1852 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
844 |
+
| 0.0602 | 68 | 4.8057 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
845 |
+
| 0.0611 | 69 | 3.1725 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
846 |
+
| 0.0619 | 70 | 3.3322 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
847 |
+
| 0.0628 | 71 | 5.139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
848 |
+
| 0.0637 | 72 | 4.307 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
849 |
+
| 0.0646 | 73 | 5.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
850 |
+
| 0.0655 | 74 | 4.0507 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
851 |
+
| 0.0664 | 75 | 3.3895 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
852 |
+
| 0.0673 | 76 | 5.6736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
853 |
+
| 0.0681 | 77 | 4.2572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
854 |
+
| 0.0690 | 78 | 3.0796 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
855 |
+
| 0.0699 | 79 | 5.0199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
856 |
+
| 0.0708 | 80 | 4.1414 | 2.7794 | 4.8890 | 1.8997 | 2.6761 | 6.2096 | 0.7622 | 3.3129 | 4.5498 | 7.2056 | 7.6809 | 6.3792 | 6.6567 | 1.3848 | 5.0030 | 0.2480 | 0.3513 | 0.5898 |
|
857 |
+
| 0.0717 | 81 | 5.8604 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
858 |
+
| 0.0726 | 82 | 4.3003 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
859 |
+
| 0.0735 | 83 | 4.4568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
860 |
+
| 0.0743 | 84 | 4.2747 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
861 |
+
| 0.0752 | 85 | 5.52 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
862 |
+
| 0.0761 | 86 | 2.7767 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
863 |
+
| 0.0770 | 87 | 4.397 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
864 |
+
| 0.0779 | 88 | 5.4449 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
865 |
+
| 0.0788 | 89 | 4.2706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
866 |
+
| 0.0796 | 90 | 6.4759 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
867 |
+
| 0.0805 | 91 | 4.1951 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
868 |
+
| 0.0814 | 92 | 4.6328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
869 |
+
| 0.0823 | 93 | 4.1278 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
870 |
+
| 0.0832 | 94 | 4.1787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
871 |
+
| 0.0841 | 95 | 5.2156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
872 |
+
| 0.0850 | 96 | 3.1403 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
873 |
+
| 0.0858 | 97 | 4.0273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
874 |
+
| 0.0867 | 98 | 3.0624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
875 |
+
| 0.0876 | 99 | 4.6786 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
876 |
+
| 0.0885 | 100 | 4.1505 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
877 |
+
| 0.0894 | 101 | 2.9529 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
878 |
+
| 0.0903 | 102 | 4.7048 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
879 |
+
| 0.0912 | 103 | 4.7388 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
880 |
+
| 0.0920 | 104 | 3.7879 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
881 |
+
| 0.0929 | 105 | 4.0311 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
882 |
+
| 0.0938 | 106 | 4.1314 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
883 |
+
| 0.0947 | 107 | 4.9411 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
884 |
+
| 0.0956 | 108 | 4.1118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
885 |
+
| 0.0965 | 109 | 3.6971 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
886 |
+
| 0.0973 | 110 | 5.605 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
887 |
+
| 0.0982 | 111 | 3.4563 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
888 |
+
| 0.0991 | 112 | 3.7422 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
889 |
+
| 0.1 | 113 | 3.8055 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
890 |
+
| 0.1009 | 114 | 5.2369 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
891 |
+
| 0.1018 | 115 | 5.6518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
892 |
+
| 0.1027 | 116 | 3.2906 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
893 |
+
| 0.1035 | 117 | 3.4996 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
894 |
+
| 0.1044 | 118 | 3.6283 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
895 |
+
| 0.1053 | 119 | 4.1487 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
896 |
+
| 0.1062 | 120 | 4.3996 | 2.7279 | 4.3946 | 1.4130 | 2.1150 | 6.0486 | 0.7172 | 2.9669 | 4.4180 | 6.3022 | 6.8412 | 6.2013 | 6.0982 | 0.9474 | 4.3852 | 0.3149 | 0.3693 | 0.5975 |
|
897 |
+
| 0.1071 | 121 | 3.5291 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
898 |
+
| 0.1080 | 122 | 3.8232 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
899 |
+
| 0.1088 | 123 | 4.6035 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
900 |
+
| 0.1097 | 124 | 3.7607 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
901 |
+
| 0.1106 | 125 | 3.8461 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
902 |
+
| 0.1115 | 126 | 3.3413 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
903 |
+
| 0.1124 | 127 | 4.2777 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
904 |
+
| 0.1133 | 128 | 4.3597 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
905 |
+
| 0.1142 | 129 | 3.9046 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
906 |
+
| 0.1150 | 130 | 4.0527 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
907 |
+
| 0.1159 | 131 | 5.0883 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
908 |
+
| 0.1168 | 132 | 3.8308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
909 |
+
| 0.1177 | 133 | 3.572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
910 |
+
| 0.1186 | 134 | 3.4299 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
911 |
+
| 0.1195 | 135 | 4.1541 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
912 |
+
| 0.1204 | 136 | 3.584 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
913 |
+
| 0.1212 | 137 | 5.0977 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
914 |
+
| 0.1221 | 138 | 4.6769 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
915 |
+
| 0.1230 | 139 | 3.8396 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
916 |
+
| 0.1239 | 140 | 3.2875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
917 |
+
| 0.1248 | 141 | 4.1946 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
918 |
+
| 0.1257 | 142 | 4.9602 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
919 |
+
| 0.1265 | 143 | 4.1531 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
920 |
+
| 0.1274 | 144 | 3.8351 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
921 |
+
| 0.1283 | 145 | 3.112 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
922 |
+
| 0.1292 | 146 | 2.3145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
923 |
+
| 0.1301 | 147 | 4.0989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
924 |
+
| 0.1310 | 148 | 3.2173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
925 |
+
| 0.1319 | 149 | 2.7913 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
926 |
+
| 0.1327 | 150 | 3.7627 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
927 |
+
| 0.1336 | 151 | 3.3669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
928 |
+
| 0.1345 | 152 | 2.6775 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
929 |
+
| 0.1354 | 153 | 3.2804 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
930 |
+
| 0.1363 | 154 | 3.0676 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
931 |
+
| 0.1372 | 155 | 3.1559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
932 |
+
| 0.1381 | 156 | 2.6638 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
933 |
+
| 0.1389 | 157 | 2.8045 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
934 |
+
| 0.1398 | 158 | 4.0568 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
935 |
+
| 0.1407 | 159 | 2.7554 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
|
936 |
+
| 0.1416 | 160 | 3.7407 | 2.7439 | 4.6364 | 1.0089 | 1.1229 | 5.4870 | 0.6284 | 2.5933 | 4.3943 | 5.6565 | 5.9870 | 5.6944 | 5.3857 | 0.3622 | 3.4011 | 0.3141 | 0.3898 | 0.6417 |
|
937 |
+
|
938 |
+
</details>
|
939 |
+
|
940 |
+
### Framework Versions
|
941 |
+
- Python: 3.10.14
|
942 |
+
- Sentence Transformers: 3.2.0
|
943 |
+
- Transformers: 4.45.1
|
944 |
+
- PyTorch: 2.4.0
|
945 |
+
- Accelerate: 0.34.2
|
946 |
+
- Datasets: 3.0.1
|
947 |
+
- Tokenizers: 0.20.0
|
948 |
+
|
949 |
+
## Citation
|
950 |
+
|
951 |
+
### BibTeX
|
952 |
+
|
953 |
+
#### Sentence Transformers
|
954 |
+
```bibtex
|
955 |
+
@inproceedings{reimers-2019-sentence-bert,
|
956 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
957 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
958 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
959 |
+
month = "11",
|
960 |
+
year = "2019",
|
961 |
+
publisher = "Association for Computational Linguistics",
|
962 |
+
url = "https://arxiv.org/abs/1908.10084",
|
963 |
+
}
|
964 |
+
```
|
965 |
+
|
966 |
+
<!--
|
967 |
+
## Glossary
|
968 |
+
|
969 |
+
*Clearly define terms in order to be accessible across audiences.*
|
970 |
+
-->
|
971 |
+
|
972 |
+
<!--
|
973 |
+
## Model Card Authors
|
974 |
+
|
975 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
976 |
+
-->
|
977 |
+
|
978 |
+
<!--
|
979 |
+
## Model Card Contact
|
980 |
+
|
981 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
982 |
+
-->
|
checkpoint-160/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 128000
|
3 |
+
}
|
checkpoint-160/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/deberta-v3-small",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2Model"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-07,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"max_relative_positions": -1,
|
15 |
+
"model_type": "deberta-v2",
|
16 |
+
"norm_rel_ebd": "layer_norm",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 768,
|
23 |
+
"pos_att_type": [
|
24 |
+
"p2c",
|
25 |
+
"c2p"
|
26 |
+
],
|
27 |
+
"position_biased_input": false,
|
28 |
+
"position_buckets": 256,
|
29 |
+
"relative_attention": true,
|
30 |
+
"share_att_key": true,
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.45.1",
|
33 |
+
"type_vocab_size": 0,
|
34 |
+
"vocab_size": 128100
|
35 |
+
}
|
checkpoint-160/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.2.0",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-160/modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_AdvancedWeightedPooling",
|
12 |
+
"type": "__main__.AdvancedWeightedPooling"
|
13 |
+
}
|
14 |
+
]
|
checkpoint-160/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6de7b746bd37c44759028006cdb5d4344a78cf549e02e4acea8ca52a11481e78
|
3 |
+
size 245742074
|
checkpoint-160/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed859980e5cced35b2234dcf194946504c27cfaeb47e0cbf5f81c0662360314a
|
3 |
+
size 565251810
|
checkpoint-160/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9448eb96e5a9646b615ca3360c7d4779b2a35a153e319a11ccf79765aec03eae
|
3 |
+
size 14244
|
checkpoint-160/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9ac89dcef9273abeb7c5103e1582de275a0f4be15a81186dbf4b5ad33f4c2a4
|
3 |
+
size 1192
|
checkpoint-160/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-160/special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
checkpoint-160/spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
|
3 |
+
size 2464616
|
checkpoint-160/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-160/tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128000": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
checkpoint-160/trainer_state.json
ADDED
@@ -0,0 +1,1925 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.1415929203539823,
|
5 |
+
"eval_steps": 40,
|
6 |
+
"global_step": 160,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0008849557522123894,
|
13 |
+
"grad_norm": NaN,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 5.8564,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0017699115044247787,
|
20 |
+
"grad_norm": NaN,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 7.1716,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.002654867256637168,
|
27 |
+
"grad_norm": NaN,
|
28 |
+
"learning_rate": 0.0,
|
29 |
+
"loss": 5.9095,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0035398230088495575,
|
34 |
+
"grad_norm": 21.95326805114746,
|
35 |
+
"learning_rate": 3.5377358490566036e-09,
|
36 |
+
"loss": 5.0841,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.004424778761061947,
|
41 |
+
"grad_norm": 16.607179641723633,
|
42 |
+
"learning_rate": 7.075471698113207e-09,
|
43 |
+
"loss": 4.0184,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.005309734513274336,
|
48 |
+
"grad_norm": 33.789615631103516,
|
49 |
+
"learning_rate": 1.0613207547169811e-08,
|
50 |
+
"loss": 6.2191,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.006194690265486726,
|
55 |
+
"grad_norm": 28.073551177978516,
|
56 |
+
"learning_rate": 1.4150943396226414e-08,
|
57 |
+
"loss": 5.6124,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.007079646017699115,
|
62 |
+
"grad_norm": 17.365602493286133,
|
63 |
+
"learning_rate": 1.768867924528302e-08,
|
64 |
+
"loss": 3.9544,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.007964601769911504,
|
69 |
+
"grad_norm": 19.384475708007812,
|
70 |
+
"learning_rate": 2.1226415094339622e-08,
|
71 |
+
"loss": 4.7149,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.008849557522123894,
|
76 |
+
"grad_norm": 19.67770004272461,
|
77 |
+
"learning_rate": 2.4764150943396227e-08,
|
78 |
+
"loss": 4.9616,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.009734513274336283,
|
83 |
+
"grad_norm": 24.233421325683594,
|
84 |
+
"learning_rate": 2.830188679245283e-08,
|
85 |
+
"loss": 5.2794,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.010619469026548672,
|
90 |
+
"grad_norm": Infinity,
|
91 |
+
"learning_rate": 2.830188679245283e-08,
|
92 |
+
"loss": 8.8704,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.011504424778761062,
|
97 |
+
"grad_norm": 34.37785720825195,
|
98 |
+
"learning_rate": 3.183962264150943e-08,
|
99 |
+
"loss": 6.0707,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.012389380530973451,
|
104 |
+
"grad_norm": 25.11741065979004,
|
105 |
+
"learning_rate": 3.537735849056604e-08,
|
106 |
+
"loss": 5.4071,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.01327433628318584,
|
111 |
+
"grad_norm": 53.84364700317383,
|
112 |
+
"learning_rate": 3.891509433962264e-08,
|
113 |
+
"loss": 6.9104,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.01415929203539823,
|
118 |
+
"grad_norm": 32.0903434753418,
|
119 |
+
"learning_rate": 4.2452830188679244e-08,
|
120 |
+
"loss": 6.0276,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.01504424778761062,
|
125 |
+
"grad_norm": 39.742130279541016,
|
126 |
+
"learning_rate": 4.599056603773585e-08,
|
127 |
+
"loss": 6.737,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.01592920353982301,
|
132 |
+
"grad_norm": 45.267417907714844,
|
133 |
+
"learning_rate": 4.9528301886792454e-08,
|
134 |
+
"loss": 6.5354,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.016814159292035398,
|
139 |
+
"grad_norm": 22.39731788635254,
|
140 |
+
"learning_rate": 5.3066037735849055e-08,
|
141 |
+
"loss": 5.206,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.017699115044247787,
|
146 |
+
"grad_norm": 20.858232498168945,
|
147 |
+
"learning_rate": 5.660377358490566e-08,
|
148 |
+
"loss": 5.2469,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.018584070796460177,
|
153 |
+
"grad_norm": 23.96446990966797,
|
154 |
+
"learning_rate": 6.014150943396226e-08,
|
155 |
+
"loss": 5.3771,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.019469026548672566,
|
160 |
+
"grad_norm": 22.945741653442383,
|
161 |
+
"learning_rate": 6.367924528301887e-08,
|
162 |
+
"loss": 4.979,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.020353982300884955,
|
167 |
+
"grad_norm": 15.497300148010254,
|
168 |
+
"learning_rate": 6.721698113207547e-08,
|
169 |
+
"loss": 4.7909,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.021238938053097345,
|
174 |
+
"grad_norm": 20.039024353027344,
|
175 |
+
"learning_rate": 7.075471698113208e-08,
|
176 |
+
"loss": 4.9086,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.022123893805309734,
|
181 |
+
"grad_norm": 21.30576515197754,
|
182 |
+
"learning_rate": 7.429245283018869e-08,
|
183 |
+
"loss": 4.8826,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.023008849557522124,
|
188 |
+
"grad_norm": 64.5285873413086,
|
189 |
+
"learning_rate": 7.783018867924529e-08,
|
190 |
+
"loss": 8.2266,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.023893805309734513,
|
195 |
+
"grad_norm": 59.894893646240234,
|
196 |
+
"learning_rate": 8.13679245283019e-08,
|
197 |
+
"loss": 8.3024,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.024778761061946902,
|
202 |
+
"grad_norm": 25.504356384277344,
|
203 |
+
"learning_rate": 8.490566037735849e-08,
|
204 |
+
"loss": 5.8745,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.02566371681415929,
|
209 |
+
"grad_norm": 15.169568061828613,
|
210 |
+
"learning_rate": 8.84433962264151e-08,
|
211 |
+
"loss": 4.7298,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02654867256637168,
|
216 |
+
"grad_norm": 24.09995460510254,
|
217 |
+
"learning_rate": 9.19811320754717e-08,
|
218 |
+
"loss": 5.4614,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.02743362831858407,
|
223 |
+
"grad_norm": 28.669275283813477,
|
224 |
+
"learning_rate": 9.55188679245283e-08,
|
225 |
+
"loss": 5.8594,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.02831858407079646,
|
230 |
+
"grad_norm": 23.37987518310547,
|
231 |
+
"learning_rate": 9.905660377358491e-08,
|
232 |
+
"loss": 5.2401,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.02920353982300885,
|
237 |
+
"grad_norm": 22.815292358398438,
|
238 |
+
"learning_rate": 1.0259433962264152e-07,
|
239 |
+
"loss": 5.1579,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.03008849557522124,
|
244 |
+
"grad_norm": 13.775344848632812,
|
245 |
+
"learning_rate": 1.0613207547169811e-07,
|
246 |
+
"loss": 5.2181,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.030973451327433628,
|
251 |
+
"grad_norm": 18.642087936401367,
|
252 |
+
"learning_rate": 1.0966981132075472e-07,
|
253 |
+
"loss": 4.6328,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03185840707964602,
|
258 |
+
"grad_norm": 18.041406631469727,
|
259 |
+
"learning_rate": 1.1320754716981131e-07,
|
260 |
+
"loss": 2.121,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.03274336283185841,
|
265 |
+
"grad_norm": 23.423933029174805,
|
266 |
+
"learning_rate": 1.1674528301886792e-07,
|
267 |
+
"loss": 5.9026,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.033628318584070796,
|
272 |
+
"grad_norm": 46.25591278076172,
|
273 |
+
"learning_rate": 1.2028301886792452e-07,
|
274 |
+
"loss": 7.3796,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.034513274336283185,
|
279 |
+
"grad_norm": 20.376422882080078,
|
280 |
+
"learning_rate": 1.2382075471698114e-07,
|
281 |
+
"loss": 5.5361,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.035398230088495575,
|
286 |
+
"grad_norm": 12.82562255859375,
|
287 |
+
"learning_rate": 1.2735849056603773e-07,
|
288 |
+
"loss": 4.0243,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.035398230088495575,
|
293 |
+
"eval_Qnli-dev_cosine_accuracy": 0.5859375,
|
294 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9302856922149658,
|
295 |
+
"eval_Qnli-dev_cosine_ap": 0.5480269179285036,
|
296 |
+
"eval_Qnli-dev_cosine_f1": 0.6315789473684211,
|
297 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7634451389312744,
|
298 |
+
"eval_Qnli-dev_cosine_precision": 0.4633663366336634,
|
299 |
+
"eval_Qnli-dev_cosine_recall": 0.9915254237288136,
|
300 |
+
"eval_Qnli-dev_dot_accuracy": 0.5859375,
|
301 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 714.4895629882812,
|
302 |
+
"eval_Qnli-dev_dot_ap": 0.548060663242546,
|
303 |
+
"eval_Qnli-dev_dot_f1": 0.6315789473684211,
|
304 |
+
"eval_Qnli-dev_dot_f1_threshold": 586.342529296875,
|
305 |
+
"eval_Qnli-dev_dot_precision": 0.4633663366336634,
|
306 |
+
"eval_Qnli-dev_dot_recall": 0.9915254237288136,
|
307 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.5859375,
|
308 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 10.348224639892578,
|
309 |
+
"eval_Qnli-dev_euclidean_ap": 0.5480269179285036,
|
310 |
+
"eval_Qnli-dev_euclidean_f1": 0.6315789473684211,
|
311 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 19.05518341064453,
|
312 |
+
"eval_Qnli-dev_euclidean_precision": 0.4633663366336634,
|
313 |
+
"eval_Qnli-dev_euclidean_recall": 0.9915254237288136,
|
314 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.59765625,
|
315 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 175.22628784179688,
|
316 |
+
"eval_Qnli-dev_manhattan_ap": 0.5780924813828909,
|
317 |
+
"eval_Qnli-dev_manhattan_f1": 0.6291834002677376,
|
318 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 334.39178466796875,
|
319 |
+
"eval_Qnli-dev_manhattan_precision": 0.4598825831702544,
|
320 |
+
"eval_Qnli-dev_manhattan_recall": 0.9957627118644068,
|
321 |
+
"eval_Qnli-dev_max_accuracy": 0.59765625,
|
322 |
+
"eval_Qnli-dev_max_accuracy_threshold": 714.4895629882812,
|
323 |
+
"eval_Qnli-dev_max_ap": 0.5780924813828909,
|
324 |
+
"eval_Qnli-dev_max_f1": 0.6315789473684211,
|
325 |
+
"eval_Qnli-dev_max_f1_threshold": 586.342529296875,
|
326 |
+
"eval_Qnli-dev_max_precision": 0.4633663366336634,
|
327 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
328 |
+
"eval_allNLI-dev_cosine_accuracy": 0.6640625,
|
329 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9888672828674316,
|
330 |
+
"eval_allNLI-dev_cosine_ap": 0.32886365768247516,
|
331 |
+
"eval_allNLI-dev_cosine_f1": 0.5095729013254787,
|
332 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7477295398712158,
|
333 |
+
"eval_allNLI-dev_cosine_precision": 0.34189723320158105,
|
334 |
+
"eval_allNLI-dev_cosine_recall": 1.0,
|
335 |
+
"eval_allNLI-dev_dot_accuracy": 0.6640625,
|
336 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 759.483154296875,
|
337 |
+
"eval_allNLI-dev_dot_ap": 0.3288581611938815,
|
338 |
+
"eval_allNLI-dev_dot_f1": 0.5095729013254787,
|
339 |
+
"eval_allNLI-dev_dot_f1_threshold": 574.2760620117188,
|
340 |
+
"eval_allNLI-dev_dot_precision": 0.34189723320158105,
|
341 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
342 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.6640625,
|
343 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 3.8085508346557617,
|
344 |
+
"eval_allNLI-dev_euclidean_ap": 0.32886365768247516,
|
345 |
+
"eval_allNLI-dev_euclidean_f1": 0.5095729013254787,
|
346 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 19.684810638427734,
|
347 |
+
"eval_allNLI-dev_euclidean_precision": 0.34189723320158105,
|
348 |
+
"eval_allNLI-dev_euclidean_recall": 1.0,
|
349 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
350 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 65.93238830566406,
|
351 |
+
"eval_allNLI-dev_manhattan_ap": 0.33852594919898543,
|
352 |
+
"eval_allNLI-dev_manhattan_f1": 0.5058479532163743,
|
353 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 335.4263916015625,
|
354 |
+
"eval_allNLI-dev_manhattan_precision": 0.3385518590998043,
|
355 |
+
"eval_allNLI-dev_manhattan_recall": 1.0,
|
356 |
+
"eval_allNLI-dev_max_accuracy": 0.6640625,
|
357 |
+
"eval_allNLI-dev_max_accuracy_threshold": 759.483154296875,
|
358 |
+
"eval_allNLI-dev_max_ap": 0.33852594919898543,
|
359 |
+
"eval_allNLI-dev_max_f1": 0.5095729013254787,
|
360 |
+
"eval_allNLI-dev_max_f1_threshold": 574.2760620117188,
|
361 |
+
"eval_allNLI-dev_max_precision": 0.34189723320158105,
|
362 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
363 |
+
"eval_sequential_score": 0.5780924813828909,
|
364 |
+
"eval_sts-test_pearson_cosine": 0.1533465318414369,
|
365 |
+
"eval_sts-test_pearson_dot": 0.15333057450060855,
|
366 |
+
"eval_sts-test_pearson_euclidean": 0.1664717893342273,
|
367 |
+
"eval_sts-test_pearson_manhattan": 0.20717970064899288,
|
368 |
+
"eval_sts-test_pearson_max": 0.20717970064899288,
|
369 |
+
"eval_sts-test_spearman_cosine": 0.18786210334203038,
|
370 |
+
"eval_sts-test_spearman_dot": 0.1878347337472397,
|
371 |
+
"eval_sts-test_spearman_euclidean": 0.18786046572196458,
|
372 |
+
"eval_sts-test_spearman_manhattan": 0.22429466463153608,
|
373 |
+
"eval_sts-test_spearman_max": 0.22429466463153608,
|
374 |
+
"eval_vitaminc-pairs_loss": 2.901831865310669,
|
375 |
+
"eval_vitaminc-pairs_runtime": 4.078,
|
376 |
+
"eval_vitaminc-pairs_samples_per_second": 31.388,
|
377 |
+
"eval_vitaminc-pairs_steps_per_second": 0.245,
|
378 |
+
"step": 40
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.035398230088495575,
|
382 |
+
"eval_negation-triplets_loss": 5.690315246582031,
|
383 |
+
"eval_negation-triplets_runtime": 0.7141,
|
384 |
+
"eval_negation-triplets_samples_per_second": 179.254,
|
385 |
+
"eval_negation-triplets_steps_per_second": 1.4,
|
386 |
+
"step": 40
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.035398230088495575,
|
390 |
+
"eval_scitail-pairs-pos_loss": 2.1135852336883545,
|
391 |
+
"eval_scitail-pairs-pos_runtime": 0.8282,
|
392 |
+
"eval_scitail-pairs-pos_samples_per_second": 154.543,
|
393 |
+
"eval_scitail-pairs-pos_steps_per_second": 1.207,
|
394 |
+
"step": 40
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.035398230088495575,
|
398 |
+
"eval_scitail-pairs-qa_loss": 2.8052029609680176,
|
399 |
+
"eval_scitail-pairs-qa_runtime": 0.5471,
|
400 |
+
"eval_scitail-pairs-qa_samples_per_second": 233.943,
|
401 |
+
"eval_scitail-pairs-qa_steps_per_second": 1.828,
|
402 |
+
"step": 40
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.035398230088495575,
|
406 |
+
"eval_xsum-pairs_loss": 6.583061695098877,
|
407 |
+
"eval_xsum-pairs_runtime": 2.8921,
|
408 |
+
"eval_xsum-pairs_samples_per_second": 44.259,
|
409 |
+
"eval_xsum-pairs_steps_per_second": 0.346,
|
410 |
+
"step": 40
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.035398230088495575,
|
414 |
+
"eval_sciq_pairs_loss": 0.8882207870483398,
|
415 |
+
"eval_sciq_pairs_runtime": 3.7993,
|
416 |
+
"eval_sciq_pairs_samples_per_second": 33.69,
|
417 |
+
"eval_sciq_pairs_steps_per_second": 0.263,
|
418 |
+
"step": 40
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.035398230088495575,
|
422 |
+
"eval_qasc_pairs_loss": 4.1147541999816895,
|
423 |
+
"eval_qasc_pairs_runtime": 0.6768,
|
424 |
+
"eval_qasc_pairs_samples_per_second": 189.125,
|
425 |
+
"eval_qasc_pairs_steps_per_second": 1.478,
|
426 |
+
"step": 40
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 0.035398230088495575,
|
430 |
+
"eval_openbookqa_pairs_loss": 5.096628665924072,
|
431 |
+
"eval_openbookqa_pairs_runtime": 0.5776,
|
432 |
+
"eval_openbookqa_pairs_samples_per_second": 221.615,
|
433 |
+
"eval_openbookqa_pairs_steps_per_second": 1.731,
|
434 |
+
"step": 40
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.035398230088495575,
|
438 |
+
"eval_msmarco_pairs_loss": 10.391141891479492,
|
439 |
+
"eval_msmarco_pairs_runtime": 1.2577,
|
440 |
+
"eval_msmarco_pairs_samples_per_second": 101.77,
|
441 |
+
"eval_msmarco_pairs_steps_per_second": 0.795,
|
442 |
+
"step": 40
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.035398230088495575,
|
446 |
+
"eval_nq_pairs_loss": 10.903197288513184,
|
447 |
+
"eval_nq_pairs_runtime": 2.5051,
|
448 |
+
"eval_nq_pairs_samples_per_second": 51.095,
|
449 |
+
"eval_nq_pairs_steps_per_second": 0.399,
|
450 |
+
"step": 40
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.035398230088495575,
|
454 |
+
"eval_trivia_pairs_loss": 7.190384387969971,
|
455 |
+
"eval_trivia_pairs_runtime": 3.6482,
|
456 |
+
"eval_trivia_pairs_samples_per_second": 35.085,
|
457 |
+
"eval_trivia_pairs_steps_per_second": 0.274,
|
458 |
+
"step": 40
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.035398230088495575,
|
462 |
+
"eval_gooaq_pairs_loss": 8.193528175354004,
|
463 |
+
"eval_gooaq_pairs_runtime": 0.9648,
|
464 |
+
"eval_gooaq_pairs_samples_per_second": 132.67,
|
465 |
+
"eval_gooaq_pairs_steps_per_second": 1.036,
|
466 |
+
"step": 40
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 0.035398230088495575,
|
470 |
+
"eval_paws-pos_loss": 1.3942564725875854,
|
471 |
+
"eval_paws-pos_runtime": 0.6718,
|
472 |
+
"eval_paws-pos_samples_per_second": 190.538,
|
473 |
+
"eval_paws-pos_steps_per_second": 1.489,
|
474 |
+
"step": 40
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.035398230088495575,
|
478 |
+
"eval_global_dataset_loss": 5.671571731567383,
|
479 |
+
"eval_global_dataset_runtime": 23.0452,
|
480 |
+
"eval_global_dataset_samples_per_second": 28.77,
|
481 |
+
"eval_global_dataset_steps_per_second": 0.26,
|
482 |
+
"step": 40
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.036283185840707964,
|
486 |
+
"grad_norm": 18.026830673217773,
|
487 |
+
"learning_rate": 1.3089622641509433e-07,
|
488 |
+
"loss": 4.9072,
|
489 |
+
"step": 41
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.03716814159292035,
|
493 |
+
"grad_norm": 15.423810958862305,
|
494 |
+
"learning_rate": 1.3443396226415095e-07,
|
495 |
+
"loss": 3.4439,
|
496 |
+
"step": 42
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 0.03805309734513274,
|
500 |
+
"grad_norm": 16.31403160095215,
|
501 |
+
"learning_rate": 1.3797169811320754e-07,
|
502 |
+
"loss": 4.9787,
|
503 |
+
"step": 43
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.03893805309734513,
|
507 |
+
"grad_norm": 21.37955093383789,
|
508 |
+
"learning_rate": 1.4150943396226417e-07,
|
509 |
+
"loss": 5.8318,
|
510 |
+
"step": 44
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 0.03982300884955752,
|
514 |
+
"grad_norm": 18.23583984375,
|
515 |
+
"learning_rate": 1.4504716981132076e-07,
|
516 |
+
"loss": 5.3226,
|
517 |
+
"step": 45
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 0.04070796460176991,
|
521 |
+
"grad_norm": 20.878713607788086,
|
522 |
+
"learning_rate": 1.4858490566037738e-07,
|
523 |
+
"loss": 5.1181,
|
524 |
+
"step": 46
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.0415929203539823,
|
528 |
+
"grad_norm": 18.71149444580078,
|
529 |
+
"learning_rate": 1.5212264150943398e-07,
|
530 |
+
"loss": 4.7834,
|
531 |
+
"step": 47
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.04247787610619469,
|
535 |
+
"grad_norm": 38.85902786254883,
|
536 |
+
"learning_rate": 1.5566037735849057e-07,
|
537 |
+
"loss": 6.6303,
|
538 |
+
"step": 48
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"epoch": 0.04336283185840708,
|
542 |
+
"grad_norm": 37.41562271118164,
|
543 |
+
"learning_rate": 1.591981132075472e-07,
|
544 |
+
"loss": 5.8171,
|
545 |
+
"step": 49
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.04424778761061947,
|
549 |
+
"grad_norm": 17.541080474853516,
|
550 |
+
"learning_rate": 1.627358490566038e-07,
|
551 |
+
"loss": 5.1962,
|
552 |
+
"step": 50
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.04513274336283186,
|
556 |
+
"grad_norm": 16.145116806030273,
|
557 |
+
"learning_rate": 1.6627358490566038e-07,
|
558 |
+
"loss": 5.2096,
|
559 |
+
"step": 51
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.04601769911504425,
|
563 |
+
"grad_norm": 20.175189971923828,
|
564 |
+
"learning_rate": 1.6981132075471698e-07,
|
565 |
+
"loss": 5.0943,
|
566 |
+
"step": 52
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.046902654867256637,
|
570 |
+
"grad_norm": 13.441214561462402,
|
571 |
+
"learning_rate": 1.733490566037736e-07,
|
572 |
+
"loss": 4.9038,
|
573 |
+
"step": 53
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.047787610619469026,
|
577 |
+
"grad_norm": 13.396607398986816,
|
578 |
+
"learning_rate": 1.768867924528302e-07,
|
579 |
+
"loss": 4.6479,
|
580 |
+
"step": 54
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.048672566371681415,
|
584 |
+
"grad_norm": 13.68046760559082,
|
585 |
+
"learning_rate": 1.804245283018868e-07,
|
586 |
+
"loss": 5.5098,
|
587 |
+
"step": 55
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.049557522123893805,
|
591 |
+
"grad_norm": 13.278443336486816,
|
592 |
+
"learning_rate": 1.839622641509434e-07,
|
593 |
+
"loss": 4.6979,
|
594 |
+
"step": 56
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.050442477876106194,
|
598 |
+
"grad_norm": 15.295453071594238,
|
599 |
+
"learning_rate": 1.875e-07,
|
600 |
+
"loss": 3.1969,
|
601 |
+
"step": 57
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.05132743362831858,
|
605 |
+
"grad_norm": 12.185781478881836,
|
606 |
+
"learning_rate": 1.910377358490566e-07,
|
607 |
+
"loss": 4.4127,
|
608 |
+
"step": 58
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.05221238938053097,
|
612 |
+
"grad_norm": 10.874494552612305,
|
613 |
+
"learning_rate": 1.9457547169811322e-07,
|
614 |
+
"loss": 3.7746,
|
615 |
+
"step": 59
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.05309734513274336,
|
619 |
+
"grad_norm": 9.654823303222656,
|
620 |
+
"learning_rate": 1.9811320754716982e-07,
|
621 |
+
"loss": 4.5378,
|
622 |
+
"step": 60
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.05398230088495575,
|
626 |
+
"grad_norm": 21.123645782470703,
|
627 |
+
"learning_rate": 2.016509433962264e-07,
|
628 |
+
"loss": 5.0209,
|
629 |
+
"step": 61
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.05486725663716814,
|
633 |
+
"grad_norm": 33.47934341430664,
|
634 |
+
"learning_rate": 2.0518867924528303e-07,
|
635 |
+
"loss": 6.5936,
|
636 |
+
"step": 62
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.05575221238938053,
|
640 |
+
"grad_norm": 10.2566556930542,
|
641 |
+
"learning_rate": 2.0872641509433963e-07,
|
642 |
+
"loss": 4.2315,
|
643 |
+
"step": 63
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.05663716814159292,
|
647 |
+
"grad_norm": 28.198625564575195,
|
648 |
+
"learning_rate": 2.1226415094339622e-07,
|
649 |
+
"loss": 6.4269,
|
650 |
+
"step": 64
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.05752212389380531,
|
654 |
+
"grad_norm": 9.386558532714844,
|
655 |
+
"learning_rate": 2.1580188679245282e-07,
|
656 |
+
"loss": 4.2644,
|
657 |
+
"step": 65
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.0584070796460177,
|
661 |
+
"grad_norm": 12.687555313110352,
|
662 |
+
"learning_rate": 2.1933962264150944e-07,
|
663 |
+
"loss": 5.1388,
|
664 |
+
"step": 66
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.05929203539823009,
|
668 |
+
"grad_norm": 14.834878921508789,
|
669 |
+
"learning_rate": 2.2287735849056603e-07,
|
670 |
+
"loss": 5.1852,
|
671 |
+
"step": 67
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.06017699115044248,
|
675 |
+
"grad_norm": 10.888677597045898,
|
676 |
+
"learning_rate": 2.2641509433962263e-07,
|
677 |
+
"loss": 4.8057,
|
678 |
+
"step": 68
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.061061946902654866,
|
682 |
+
"grad_norm": 13.97256851196289,
|
683 |
+
"learning_rate": 2.2995283018867925e-07,
|
684 |
+
"loss": 3.1725,
|
685 |
+
"step": 69
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.061946902654867256,
|
689 |
+
"grad_norm": 11.82534122467041,
|
690 |
+
"learning_rate": 2.3349056603773584e-07,
|
691 |
+
"loss": 3.3322,
|
692 |
+
"step": 70
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.06283185840707965,
|
696 |
+
"grad_norm": 16.99266242980957,
|
697 |
+
"learning_rate": 2.3702830188679244e-07,
|
698 |
+
"loss": 5.139,
|
699 |
+
"step": 71
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.06371681415929203,
|
703 |
+
"grad_norm": 8.74513053894043,
|
704 |
+
"learning_rate": 2.4056603773584903e-07,
|
705 |
+
"loss": 4.307,
|
706 |
+
"step": 72
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.06460176991150443,
|
710 |
+
"grad_norm": 11.715869903564453,
|
711 |
+
"learning_rate": 2.4410377358490563e-07,
|
712 |
+
"loss": 5.0133,
|
713 |
+
"step": 73
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.06548672566371681,
|
717 |
+
"grad_norm": 9.844196319580078,
|
718 |
+
"learning_rate": 2.476415094339623e-07,
|
719 |
+
"loss": 4.0507,
|
720 |
+
"step": 74
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 0.06637168141592921,
|
724 |
+
"grad_norm": 12.447444915771484,
|
725 |
+
"learning_rate": 2.5117924528301887e-07,
|
726 |
+
"loss": 3.3895,
|
727 |
+
"step": 75
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.06725663716814159,
|
731 |
+
"grad_norm": 23.91596794128418,
|
732 |
+
"learning_rate": 2.5471698113207547e-07,
|
733 |
+
"loss": 5.6736,
|
734 |
+
"step": 76
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.06814159292035399,
|
738 |
+
"grad_norm": 9.635603904724121,
|
739 |
+
"learning_rate": 2.5825471698113206e-07,
|
740 |
+
"loss": 4.2572,
|
741 |
+
"step": 77
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.06902654867256637,
|
745 |
+
"grad_norm": 14.971665382385254,
|
746 |
+
"learning_rate": 2.6179245283018866e-07,
|
747 |
+
"loss": 3.0796,
|
748 |
+
"step": 78
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.06991150442477877,
|
752 |
+
"grad_norm": 11.226128578186035,
|
753 |
+
"learning_rate": 2.6533018867924525e-07,
|
754 |
+
"loss": 5.0199,
|
755 |
+
"step": 79
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.07079646017699115,
|
759 |
+
"grad_norm": 11.01388931274414,
|
760 |
+
"learning_rate": 2.688679245283019e-07,
|
761 |
+
"loss": 4.1414,
|
762 |
+
"step": 80
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.07079646017699115,
|
766 |
+
"eval_Qnli-dev_cosine_accuracy": 0.591796875,
|
767 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9258557558059692,
|
768 |
+
"eval_Qnli-dev_cosine_ap": 0.5585355274462735,
|
769 |
+
"eval_Qnli-dev_cosine_f1": 0.6291834002677376,
|
770 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.750666618347168,
|
771 |
+
"eval_Qnli-dev_cosine_precision": 0.4598825831702544,
|
772 |
+
"eval_Qnli-dev_cosine_recall": 0.9957627118644068,
|
773 |
+
"eval_Qnli-dev_dot_accuracy": 0.591796875,
|
774 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 711.18359375,
|
775 |
+
"eval_Qnli-dev_dot_ap": 0.5585297234749824,
|
776 |
+
"eval_Qnli-dev_dot_f1": 0.6291834002677376,
|
777 |
+
"eval_Qnli-dev_dot_f1_threshold": 576.5970458984375,
|
778 |
+
"eval_Qnli-dev_dot_precision": 0.4598825831702544,
|
779 |
+
"eval_Qnli-dev_dot_recall": 0.9957627118644068,
|
780 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.591796875,
|
781 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 10.672666549682617,
|
782 |
+
"eval_Qnli-dev_euclidean_ap": 0.5585355274462735,
|
783 |
+
"eval_Qnli-dev_euclidean_f1": 0.6291834002677376,
|
784 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 19.553747177124023,
|
785 |
+
"eval_Qnli-dev_euclidean_precision": 0.4598825831702544,
|
786 |
+
"eval_Qnli-dev_euclidean_recall": 0.9957627118644068,
|
787 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.619140625,
|
788 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 188.09068298339844,
|
789 |
+
"eval_Qnli-dev_manhattan_ap": 0.5898283705050701,
|
790 |
+
"eval_Qnli-dev_manhattan_f1": 0.6301775147928994,
|
791 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 237.80462646484375,
|
792 |
+
"eval_Qnli-dev_manhattan_precision": 0.48409090909090907,
|
793 |
+
"eval_Qnli-dev_manhattan_recall": 0.902542372881356,
|
794 |
+
"eval_Qnli-dev_max_accuracy": 0.619140625,
|
795 |
+
"eval_Qnli-dev_max_accuracy_threshold": 711.18359375,
|
796 |
+
"eval_Qnli-dev_max_ap": 0.5898283705050701,
|
797 |
+
"eval_Qnli-dev_max_f1": 0.6301775147928994,
|
798 |
+
"eval_Qnli-dev_max_f1_threshold": 576.5970458984375,
|
799 |
+
"eval_Qnli-dev_max_precision": 0.48409090909090907,
|
800 |
+
"eval_Qnli-dev_max_recall": 0.9957627118644068,
|
801 |
+
"eval_allNLI-dev_cosine_accuracy": 0.666015625,
|
802 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.983686089515686,
|
803 |
+
"eval_allNLI-dev_cosine_ap": 0.34411819659341086,
|
804 |
+
"eval_allNLI-dev_cosine_f1": 0.5065885797950219,
|
805 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7642872333526611,
|
806 |
+
"eval_allNLI-dev_cosine_precision": 0.3392156862745098,
|
807 |
+
"eval_allNLI-dev_cosine_recall": 1.0,
|
808 |
+
"eval_allNLI-dev_dot_accuracy": 0.666015625,
|
809 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 755.60302734375,
|
810 |
+
"eval_allNLI-dev_dot_ap": 0.344109544232086,
|
811 |
+
"eval_allNLI-dev_dot_f1": 0.5065885797950219,
|
812 |
+
"eval_allNLI-dev_dot_f1_threshold": 587.0625,
|
813 |
+
"eval_allNLI-dev_dot_precision": 0.3392156862745098,
|
814 |
+
"eval_allNLI-dev_dot_recall": 1.0,
|
815 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.666015625,
|
816 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.00581693649292,
|
817 |
+
"eval_allNLI-dev_euclidean_ap": 0.3441246898925644,
|
818 |
+
"eval_allNLI-dev_euclidean_f1": 0.5065885797950219,
|
819 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 19.022436141967773,
|
820 |
+
"eval_allNLI-dev_euclidean_precision": 0.3392156862745098,
|
821 |
+
"eval_allNLI-dev_euclidean_recall": 1.0,
|
822 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
823 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 62.69102096557617,
|
824 |
+
"eval_allNLI-dev_manhattan_ap": 0.35131239981425566,
|
825 |
+
"eval_allNLI-dev_manhattan_f1": 0.5058479532163743,
|
826 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 337.6861877441406,
|
827 |
+
"eval_allNLI-dev_manhattan_precision": 0.3385518590998043,
|
828 |
+
"eval_allNLI-dev_manhattan_recall": 1.0,
|
829 |
+
"eval_allNLI-dev_max_accuracy": 0.666015625,
|
830 |
+
"eval_allNLI-dev_max_accuracy_threshold": 755.60302734375,
|
831 |
+
"eval_allNLI-dev_max_ap": 0.35131239981425566,
|
832 |
+
"eval_allNLI-dev_max_f1": 0.5065885797950219,
|
833 |
+
"eval_allNLI-dev_max_f1_threshold": 587.0625,
|
834 |
+
"eval_allNLI-dev_max_precision": 0.3392156862745098,
|
835 |
+
"eval_allNLI-dev_max_recall": 1.0,
|
836 |
+
"eval_sequential_score": 0.5898283705050701,
|
837 |
+
"eval_sts-test_pearson_cosine": 0.22248205020578934,
|
838 |
+
"eval_sts-test_pearson_dot": 0.22239084967931927,
|
839 |
+
"eval_sts-test_pearson_euclidean": 0.2323160413842197,
|
840 |
+
"eval_sts-test_pearson_manhattan": 0.26632593273308647,
|
841 |
+
"eval_sts-test_pearson_max": 0.26632593273308647,
|
842 |
+
"eval_sts-test_spearman_cosine": 0.24802235964390085,
|
843 |
+
"eval_sts-test_spearman_dot": 0.24791612015173234,
|
844 |
+
"eval_sts-test_spearman_euclidean": 0.24799036249272113,
|
845 |
+
"eval_sts-test_spearman_manhattan": 0.2843623073856928,
|
846 |
+
"eval_sts-test_spearman_max": 0.2843623073856928,
|
847 |
+
"eval_vitaminc-pairs_loss": 2.7793872356414795,
|
848 |
+
"eval_vitaminc-pairs_runtime": 3.7649,
|
849 |
+
"eval_vitaminc-pairs_samples_per_second": 33.998,
|
850 |
+
"eval_vitaminc-pairs_steps_per_second": 0.266,
|
851 |
+
"step": 80
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 0.07079646017699115,
|
855 |
+
"eval_negation-triplets_loss": 4.888970851898193,
|
856 |
+
"eval_negation-triplets_runtime": 0.7134,
|
857 |
+
"eval_negation-triplets_samples_per_second": 179.432,
|
858 |
+
"eval_negation-triplets_steps_per_second": 1.402,
|
859 |
+
"step": 80
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 0.07079646017699115,
|
863 |
+
"eval_scitail-pairs-pos_loss": 1.8996644020080566,
|
864 |
+
"eval_scitail-pairs-pos_runtime": 0.8506,
|
865 |
+
"eval_scitail-pairs-pos_samples_per_second": 150.477,
|
866 |
+
"eval_scitail-pairs-pos_steps_per_second": 1.176,
|
867 |
+
"step": 80
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.07079646017699115,
|
871 |
+
"eval_scitail-pairs-qa_loss": 2.6760551929473877,
|
872 |
+
"eval_scitail-pairs-qa_runtime": 0.5685,
|
873 |
+
"eval_scitail-pairs-qa_samples_per_second": 225.171,
|
874 |
+
"eval_scitail-pairs-qa_steps_per_second": 1.759,
|
875 |
+
"step": 80
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.07079646017699115,
|
879 |
+
"eval_xsum-pairs_loss": 6.209648609161377,
|
880 |
+
"eval_xsum-pairs_runtime": 2.9221,
|
881 |
+
"eval_xsum-pairs_samples_per_second": 43.804,
|
882 |
+
"eval_xsum-pairs_steps_per_second": 0.342,
|
883 |
+
"step": 80
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 0.07079646017699115,
|
887 |
+
"eval_sciq_pairs_loss": 0.7622462511062622,
|
888 |
+
"eval_sciq_pairs_runtime": 3.7816,
|
889 |
+
"eval_sciq_pairs_samples_per_second": 33.848,
|
890 |
+
"eval_sciq_pairs_steps_per_second": 0.264,
|
891 |
+
"step": 80
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.07079646017699115,
|
895 |
+
"eval_qasc_pairs_loss": 3.3129472732543945,
|
896 |
+
"eval_qasc_pairs_runtime": 0.6761,
|
897 |
+
"eval_qasc_pairs_samples_per_second": 189.334,
|
898 |
+
"eval_qasc_pairs_steps_per_second": 1.479,
|
899 |
+
"step": 80
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.07079646017699115,
|
903 |
+
"eval_openbookqa_pairs_loss": 4.549765586853027,
|
904 |
+
"eval_openbookqa_pairs_runtime": 0.5767,
|
905 |
+
"eval_openbookqa_pairs_samples_per_second": 221.954,
|
906 |
+
"eval_openbookqa_pairs_steps_per_second": 1.734,
|
907 |
+
"step": 80
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.07079646017699115,
|
911 |
+
"eval_msmarco_pairs_loss": 7.205582141876221,
|
912 |
+
"eval_msmarco_pairs_runtime": 1.2621,
|
913 |
+
"eval_msmarco_pairs_samples_per_second": 101.416,
|
914 |
+
"eval_msmarco_pairs_steps_per_second": 0.792,
|
915 |
+
"step": 80
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.07079646017699115,
|
919 |
+
"eval_nq_pairs_loss": 7.680945873260498,
|
920 |
+
"eval_nq_pairs_runtime": 2.5052,
|
921 |
+
"eval_nq_pairs_samples_per_second": 51.095,
|
922 |
+
"eval_nq_pairs_steps_per_second": 0.399,
|
923 |
+
"step": 80
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 0.07079646017699115,
|
927 |
+
"eval_trivia_pairs_loss": 6.37924861907959,
|
928 |
+
"eval_trivia_pairs_runtime": 3.6293,
|
929 |
+
"eval_trivia_pairs_samples_per_second": 35.268,
|
930 |
+
"eval_trivia_pairs_steps_per_second": 0.276,
|
931 |
+
"step": 80
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.07079646017699115,
|
935 |
+
"eval_gooaq_pairs_loss": 6.656675338745117,
|
936 |
+
"eval_gooaq_pairs_runtime": 0.9698,
|
937 |
+
"eval_gooaq_pairs_samples_per_second": 131.988,
|
938 |
+
"eval_gooaq_pairs_steps_per_second": 1.031,
|
939 |
+
"step": 80
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.07079646017699115,
|
943 |
+
"eval_paws-pos_loss": 1.3848179578781128,
|
944 |
+
"eval_paws-pos_runtime": 0.6727,
|
945 |
+
"eval_paws-pos_samples_per_second": 190.278,
|
946 |
+
"eval_paws-pos_steps_per_second": 1.487,
|
947 |
+
"step": 80
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.07079646017699115,
|
951 |
+
"eval_global_dataset_loss": 5.002967834472656,
|
952 |
+
"eval_global_dataset_runtime": 23.048,
|
953 |
+
"eval_global_dataset_samples_per_second": 28.766,
|
954 |
+
"eval_global_dataset_steps_per_second": 0.26,
|
955 |
+
"step": 80
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.07168141592920355,
|
959 |
+
"grad_norm": 18.9890193939209,
|
960 |
+
"learning_rate": 2.724056603773585e-07,
|
961 |
+
"loss": 5.8604,
|
962 |
+
"step": 81
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.07256637168141593,
|
966 |
+
"grad_norm": 8.206193923950195,
|
967 |
+
"learning_rate": 2.759433962264151e-07,
|
968 |
+
"loss": 4.3003,
|
969 |
+
"step": 82
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.07345132743362832,
|
973 |
+
"grad_norm": 10.03178882598877,
|
974 |
+
"learning_rate": 2.794811320754717e-07,
|
975 |
+
"loss": 4.4568,
|
976 |
+
"step": 83
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.0743362831858407,
|
980 |
+
"grad_norm": 14.74673080444336,
|
981 |
+
"learning_rate": 2.8301886792452833e-07,
|
982 |
+
"loss": 4.2747,
|
983 |
+
"step": 84
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.0752212389380531,
|
987 |
+
"grad_norm": 19.097232818603516,
|
988 |
+
"learning_rate": 2.865566037735849e-07,
|
989 |
+
"loss": 5.52,
|
990 |
+
"step": 85
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.07610619469026549,
|
994 |
+
"grad_norm": 14.828218460083008,
|
995 |
+
"learning_rate": 2.900943396226415e-07,
|
996 |
+
"loss": 2.7767,
|
997 |
+
"step": 86
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.07699115044247788,
|
1001 |
+
"grad_norm": 9.30789566040039,
|
1002 |
+
"learning_rate": 2.936320754716981e-07,
|
1003 |
+
"loss": 4.397,
|
1004 |
+
"step": 87
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.07787610619469026,
|
1008 |
+
"grad_norm": 15.119461059570312,
|
1009 |
+
"learning_rate": 2.9716981132075476e-07,
|
1010 |
+
"loss": 5.4449,
|
1011 |
+
"step": 88
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.07876106194690266,
|
1015 |
+
"grad_norm": 8.459301948547363,
|
1016 |
+
"learning_rate": 3.0070754716981136e-07,
|
1017 |
+
"loss": 4.2706,
|
1018 |
+
"step": 89
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.07964601769911504,
|
1022 |
+
"grad_norm": 23.59125518798828,
|
1023 |
+
"learning_rate": 3.0424528301886795e-07,
|
1024 |
+
"loss": 6.4759,
|
1025 |
+
"step": 90
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.08053097345132744,
|
1029 |
+
"grad_norm": 8.729449272155762,
|
1030 |
+
"learning_rate": 3.0778301886792455e-07,
|
1031 |
+
"loss": 4.1951,
|
1032 |
+
"step": 91
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.08141592920353982,
|
1036 |
+
"grad_norm": 8.37271785736084,
|
1037 |
+
"learning_rate": 3.1132075471698114e-07,
|
1038 |
+
"loss": 4.6328,
|
1039 |
+
"step": 92
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.08230088495575222,
|
1043 |
+
"grad_norm": 10.029474258422852,
|
1044 |
+
"learning_rate": 3.1485849056603774e-07,
|
1045 |
+
"loss": 4.1278,
|
1046 |
+
"step": 93
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.0831858407079646,
|
1050 |
+
"grad_norm": 8.706567764282227,
|
1051 |
+
"learning_rate": 3.183962264150944e-07,
|
1052 |
+
"loss": 4.1787,
|
1053 |
+
"step": 94
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.084070796460177,
|
1057 |
+
"grad_norm": 13.88837718963623,
|
1058 |
+
"learning_rate": 3.21933962264151e-07,
|
1059 |
+
"loss": 5.2156,
|
1060 |
+
"step": 95
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.08495575221238938,
|
1064 |
+
"grad_norm": 12.01068115234375,
|
1065 |
+
"learning_rate": 3.254716981132076e-07,
|
1066 |
+
"loss": 3.1403,
|
1067 |
+
"step": 96
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.08584070796460178,
|
1071 |
+
"grad_norm": 8.432968139648438,
|
1072 |
+
"learning_rate": 3.2900943396226417e-07,
|
1073 |
+
"loss": 4.0273,
|
1074 |
+
"step": 97
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.08672566371681416,
|
1078 |
+
"grad_norm": 12.645098686218262,
|
1079 |
+
"learning_rate": 3.3254716981132077e-07,
|
1080 |
+
"loss": 3.0624,
|
1081 |
+
"step": 98
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.08761061946902655,
|
1085 |
+
"grad_norm": 11.483688354492188,
|
1086 |
+
"learning_rate": 3.3608490566037736e-07,
|
1087 |
+
"loss": 4.6786,
|
1088 |
+
"step": 99
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.08849557522123894,
|
1092 |
+
"grad_norm": 8.645537376403809,
|
1093 |
+
"learning_rate": 3.3962264150943395e-07,
|
1094 |
+
"loss": 4.1505,
|
1095 |
+
"step": 100
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.08938053097345133,
|
1099 |
+
"grad_norm": 13.053335189819336,
|
1100 |
+
"learning_rate": 3.431603773584906e-07,
|
1101 |
+
"loss": 2.9529,
|
1102 |
+
"step": 101
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.09026548672566372,
|
1106 |
+
"grad_norm": 14.494400978088379,
|
1107 |
+
"learning_rate": 3.466981132075472e-07,
|
1108 |
+
"loss": 4.7048,
|
1109 |
+
"step": 102
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.09115044247787611,
|
1113 |
+
"grad_norm": 9.513616561889648,
|
1114 |
+
"learning_rate": 3.502358490566038e-07,
|
1115 |
+
"loss": 4.7388,
|
1116 |
+
"step": 103
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.0920353982300885,
|
1120 |
+
"grad_norm": 9.751347541809082,
|
1121 |
+
"learning_rate": 3.537735849056604e-07,
|
1122 |
+
"loss": 3.7879,
|
1123 |
+
"step": 104
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.09292035398230089,
|
1127 |
+
"grad_norm": 9.06558895111084,
|
1128 |
+
"learning_rate": 3.57311320754717e-07,
|
1129 |
+
"loss": 4.0311,
|
1130 |
+
"step": 105
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.09380530973451327,
|
1134 |
+
"grad_norm": 9.53257942199707,
|
1135 |
+
"learning_rate": 3.608490566037736e-07,
|
1136 |
+
"loss": 4.1314,
|
1137 |
+
"step": 106
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.09469026548672567,
|
1141 |
+
"grad_norm": 11.554676055908203,
|
1142 |
+
"learning_rate": 3.643867924528302e-07,
|
1143 |
+
"loss": 4.9411,
|
1144 |
+
"step": 107
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.09557522123893805,
|
1148 |
+
"grad_norm": 8.559597969055176,
|
1149 |
+
"learning_rate": 3.679245283018868e-07,
|
1150 |
+
"loss": 4.1118,
|
1151 |
+
"step": 108
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.09646017699115045,
|
1155 |
+
"grad_norm": 10.008039474487305,
|
1156 |
+
"learning_rate": 3.714622641509434e-07,
|
1157 |
+
"loss": 3.6971,
|
1158 |
+
"step": 109
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.09734513274336283,
|
1162 |
+
"grad_norm": 16.543254852294922,
|
1163 |
+
"learning_rate": 3.75e-07,
|
1164 |
+
"loss": 5.605,
|
1165 |
+
"step": 110
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.09823008849557523,
|
1169 |
+
"grad_norm": 11.816540718078613,
|
1170 |
+
"learning_rate": 3.7853773584905666e-07,
|
1171 |
+
"loss": 3.4563,
|
1172 |
+
"step": 111
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.09911504424778761,
|
1176 |
+
"grad_norm": 10.638028144836426,
|
1177 |
+
"learning_rate": 3.820754716981132e-07,
|
1178 |
+
"loss": 3.7422,
|
1179 |
+
"step": 112
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.1,
|
1183 |
+
"grad_norm": 8.5276460647583,
|
1184 |
+
"learning_rate": 3.8561320754716985e-07,
|
1185 |
+
"loss": 3.8055,
|
1186 |
+
"step": 113
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.10088495575221239,
|
1190 |
+
"grad_norm": 13.437420845031738,
|
1191 |
+
"learning_rate": 3.8915094339622644e-07,
|
1192 |
+
"loss": 5.2369,
|
1193 |
+
"step": 114
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.10176991150442478,
|
1197 |
+
"grad_norm": 21.039424896240234,
|
1198 |
+
"learning_rate": 3.926886792452831e-07,
|
1199 |
+
"loss": 5.6518,
|
1200 |
+
"step": 115
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.10265486725663717,
|
1204 |
+
"grad_norm": 13.487382888793945,
|
1205 |
+
"learning_rate": 3.9622641509433963e-07,
|
1206 |
+
"loss": 3.2906,
|
1207 |
+
"step": 116
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.10353982300884956,
|
1211 |
+
"grad_norm": 11.895822525024414,
|
1212 |
+
"learning_rate": 3.997641509433963e-07,
|
1213 |
+
"loss": 3.4996,
|
1214 |
+
"step": 117
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.10442477876106195,
|
1218 |
+
"grad_norm": 10.83902359008789,
|
1219 |
+
"learning_rate": 4.033018867924528e-07,
|
1220 |
+
"loss": 3.6283,
|
1221 |
+
"step": 118
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.10530973451327434,
|
1225 |
+
"grad_norm": 10.552660942077637,
|
1226 |
+
"learning_rate": 4.0683962264150947e-07,
|
1227 |
+
"loss": 4.1487,
|
1228 |
+
"step": 119
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.10619469026548672,
|
1232 |
+
"grad_norm": 9.924088478088379,
|
1233 |
+
"learning_rate": 4.1037735849056606e-07,
|
1234 |
+
"loss": 4.3996,
|
1235 |
+
"step": 120
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.10619469026548672,
|
1239 |
+
"eval_Qnli-dev_cosine_accuracy": 0.595703125,
|
1240 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9275249242782593,
|
1241 |
+
"eval_Qnli-dev_cosine_ap": 0.5645920090286662,
|
1242 |
+
"eval_Qnli-dev_cosine_f1": 0.6327077747989276,
|
1243 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.7267085313796997,
|
1244 |
+
"eval_Qnli-dev_cosine_precision": 0.4627450980392157,
|
1245 |
+
"eval_Qnli-dev_cosine_recall": 1.0,
|
1246 |
+
"eval_Qnli-dev_dot_accuracy": 0.595703125,
|
1247 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 712.4608154296875,
|
1248 |
+
"eval_Qnli-dev_dot_ap": 0.5646837736357366,
|
1249 |
+
"eval_Qnli-dev_dot_f1": 0.6327077747989276,
|
1250 |
+
"eval_Qnli-dev_dot_f1_threshold": 558.2177734375,
|
1251 |
+
"eval_Qnli-dev_dot_precision": 0.4627450980392157,
|
1252 |
+
"eval_Qnli-dev_dot_recall": 1.0,
|
1253 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.595703125,
|
1254 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 10.551876068115234,
|
1255 |
+
"eval_Qnli-dev_euclidean_ap": 0.5645997569733668,
|
1256 |
+
"eval_Qnli-dev_euclidean_f1": 0.6327077747989276,
|
1257 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 20.490163803100586,
|
1258 |
+
"eval_Qnli-dev_euclidean_precision": 0.4627450980392157,
|
1259 |
+
"eval_Qnli-dev_euclidean_recall": 1.0,
|
1260 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.626953125,
|
1261 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 195.12744140625,
|
1262 |
+
"eval_Qnli-dev_manhattan_ap": 0.5975206086733145,
|
1263 |
+
"eval_Qnli-dev_manhattan_f1": 0.6322008862629247,
|
1264 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 256.6172180175781,
|
1265 |
+
"eval_Qnli-dev_manhattan_precision": 0.4852607709750567,
|
1266 |
+
"eval_Qnli-dev_manhattan_recall": 0.9067796610169492,
|
1267 |
+
"eval_Qnli-dev_max_accuracy": 0.626953125,
|
1268 |
+
"eval_Qnli-dev_max_accuracy_threshold": 712.4608154296875,
|
1269 |
+
"eval_Qnli-dev_max_ap": 0.5975206086733145,
|
1270 |
+
"eval_Qnli-dev_max_f1": 0.6327077747989276,
|
1271 |
+
"eval_Qnli-dev_max_f1_threshold": 558.2177734375,
|
1272 |
+
"eval_Qnli-dev_max_precision": 0.4852607709750567,
|
1273 |
+
"eval_Qnli-dev_max_recall": 1.0,
|
1274 |
+
"eval_allNLI-dev_cosine_accuracy": 0.666015625,
|
1275 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.983871340751648,
|
1276 |
+
"eval_allNLI-dev_cosine_ap": 0.36035507065342104,
|
1277 |
+
"eval_allNLI-dev_cosine_f1": 0.5051395007342143,
|
1278 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.7787582874298096,
|
1279 |
+
"eval_allNLI-dev_cosine_precision": 0.33858267716535434,
|
1280 |
+
"eval_allNLI-dev_cosine_recall": 0.9942196531791907,
|
1281 |
+
"eval_allNLI-dev_dot_accuracy": 0.666015625,
|
1282 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 755.7670288085938,
|
1283 |
+
"eval_allNLI-dev_dot_ap": 0.36031241443166284,
|
1284 |
+
"eval_allNLI-dev_dot_f1": 0.5051395007342143,
|
1285 |
+
"eval_allNLI-dev_dot_f1_threshold": 598.2041625976562,
|
1286 |
+
"eval_allNLI-dev_dot_precision": 0.33858267716535434,
|
1287 |
+
"eval_allNLI-dev_dot_recall": 0.9942196531791907,
|
1288 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.666015625,
|
1289 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 4.964720249176025,
|
1290 |
+
"eval_allNLI-dev_euclidean_ap": 0.36035507065342104,
|
1291 |
+
"eval_allNLI-dev_euclidean_f1": 0.5051395007342143,
|
1292 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 18.434789657592773,
|
1293 |
+
"eval_allNLI-dev_euclidean_precision": 0.33858267716535434,
|
1294 |
+
"eval_allNLI-dev_euclidean_recall": 0.9942196531791907,
|
1295 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
1296 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 66.59053039550781,
|
1297 |
+
"eval_allNLI-dev_manhattan_ap": 0.3692975841596879,
|
1298 |
+
"eval_allNLI-dev_manhattan_f1": 0.5029239766081871,
|
1299 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 380.123779296875,
|
1300 |
+
"eval_allNLI-dev_manhattan_precision": 0.33659491193737767,
|
1301 |
+
"eval_allNLI-dev_manhattan_recall": 0.9942196531791907,
|
1302 |
+
"eval_allNLI-dev_max_accuracy": 0.666015625,
|
1303 |
+
"eval_allNLI-dev_max_accuracy_threshold": 755.7670288085938,
|
1304 |
+
"eval_allNLI-dev_max_ap": 0.3692975841596879,
|
1305 |
+
"eval_allNLI-dev_max_f1": 0.5051395007342143,
|
1306 |
+
"eval_allNLI-dev_max_f1_threshold": 598.2041625976562,
|
1307 |
+
"eval_allNLI-dev_max_precision": 0.33858267716535434,
|
1308 |
+
"eval_allNLI-dev_max_recall": 0.9942196531791907,
|
1309 |
+
"eval_sequential_score": 0.5975206086733145,
|
1310 |
+
"eval_sts-test_pearson_cosine": 0.2980667522290251,
|
1311 |
+
"eval_sts-test_pearson_dot": 0.29795063801865274,
|
1312 |
+
"eval_sts-test_pearson_euclidean": 0.30279956330153407,
|
1313 |
+
"eval_sts-test_pearson_manhattan": 0.32939035635624725,
|
1314 |
+
"eval_sts-test_pearson_max": 0.32939035635624725,
|
1315 |
+
"eval_sts-test_spearman_cosine": 0.3148821747085771,
|
1316 |
+
"eval_sts-test_spearman_dot": 0.3149517475826025,
|
1317 |
+
"eval_sts-test_spearman_euclidean": 0.31489636085812106,
|
1318 |
+
"eval_sts-test_spearman_manhattan": 0.34558301612848313,
|
1319 |
+
"eval_sts-test_spearman_max": 0.34558301612848313,
|
1320 |
+
"eval_vitaminc-pairs_loss": 2.727938652038574,
|
1321 |
+
"eval_vitaminc-pairs_runtime": 3.7459,
|
1322 |
+
"eval_vitaminc-pairs_samples_per_second": 34.17,
|
1323 |
+
"eval_vitaminc-pairs_steps_per_second": 0.267,
|
1324 |
+
"step": 120
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 0.10619469026548672,
|
1328 |
+
"eval_negation-triplets_loss": 4.394620418548584,
|
1329 |
+
"eval_negation-triplets_runtime": 0.7078,
|
1330 |
+
"eval_negation-triplets_samples_per_second": 180.852,
|
1331 |
+
"eval_negation-triplets_steps_per_second": 1.413,
|
1332 |
+
"step": 120
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.10619469026548672,
|
1336 |
+
"eval_scitail-pairs-pos_loss": 1.4130322933197021,
|
1337 |
+
"eval_scitail-pairs-pos_runtime": 0.8587,
|
1338 |
+
"eval_scitail-pairs-pos_samples_per_second": 149.07,
|
1339 |
+
"eval_scitail-pairs-pos_steps_per_second": 1.165,
|
1340 |
+
"step": 120
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.10619469026548672,
|
1344 |
+
"eval_scitail-pairs-qa_loss": 2.1150403022766113,
|
1345 |
+
"eval_scitail-pairs-qa_runtime": 0.549,
|
1346 |
+
"eval_scitail-pairs-qa_samples_per_second": 233.163,
|
1347 |
+
"eval_scitail-pairs-qa_steps_per_second": 1.822,
|
1348 |
+
"step": 120
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"epoch": 0.10619469026548672,
|
1352 |
+
"eval_xsum-pairs_loss": 6.048598289489746,
|
1353 |
+
"eval_xsum-pairs_runtime": 2.9142,
|
1354 |
+
"eval_xsum-pairs_samples_per_second": 43.923,
|
1355 |
+
"eval_xsum-pairs_steps_per_second": 0.343,
|
1356 |
+
"step": 120
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.10619469026548672,
|
1360 |
+
"eval_sciq_pairs_loss": 0.7171850800514221,
|
1361 |
+
"eval_sciq_pairs_runtime": 3.7786,
|
1362 |
+
"eval_sciq_pairs_samples_per_second": 33.875,
|
1363 |
+
"eval_sciq_pairs_steps_per_second": 0.265,
|
1364 |
+
"step": 120
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.10619469026548672,
|
1368 |
+
"eval_qasc_pairs_loss": 2.96693754196167,
|
1369 |
+
"eval_qasc_pairs_runtime": 0.6718,
|
1370 |
+
"eval_qasc_pairs_samples_per_second": 190.538,
|
1371 |
+
"eval_qasc_pairs_steps_per_second": 1.489,
|
1372 |
+
"step": 120
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 0.10619469026548672,
|
1376 |
+
"eval_openbookqa_pairs_loss": 4.418018341064453,
|
1377 |
+
"eval_openbookqa_pairs_runtime": 0.577,
|
1378 |
+
"eval_openbookqa_pairs_samples_per_second": 221.852,
|
1379 |
+
"eval_openbookqa_pairs_steps_per_second": 1.733,
|
1380 |
+
"step": 120
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"epoch": 0.10619469026548672,
|
1384 |
+
"eval_msmarco_pairs_loss": 6.302182197570801,
|
1385 |
+
"eval_msmarco_pairs_runtime": 1.2547,
|
1386 |
+
"eval_msmarco_pairs_samples_per_second": 102.016,
|
1387 |
+
"eval_msmarco_pairs_steps_per_second": 0.797,
|
1388 |
+
"step": 120
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.10619469026548672,
|
1392 |
+
"eval_nq_pairs_loss": 6.841231822967529,
|
1393 |
+
"eval_nq_pairs_runtime": 2.5052,
|
1394 |
+
"eval_nq_pairs_samples_per_second": 51.094,
|
1395 |
+
"eval_nq_pairs_steps_per_second": 0.399,
|
1396 |
+
"step": 120
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.10619469026548672,
|
1400 |
+
"eval_trivia_pairs_loss": 6.201311111450195,
|
1401 |
+
"eval_trivia_pairs_runtime": 3.6311,
|
1402 |
+
"eval_trivia_pairs_samples_per_second": 35.251,
|
1403 |
+
"eval_trivia_pairs_steps_per_second": 0.275,
|
1404 |
+
"step": 120
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.10619469026548672,
|
1408 |
+
"eval_gooaq_pairs_loss": 6.098212718963623,
|
1409 |
+
"eval_gooaq_pairs_runtime": 0.9643,
|
1410 |
+
"eval_gooaq_pairs_samples_per_second": 132.741,
|
1411 |
+
"eval_gooaq_pairs_steps_per_second": 1.037,
|
1412 |
+
"step": 120
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.10619469026548672,
|
1416 |
+
"eval_paws-pos_loss": 0.9473956823348999,
|
1417 |
+
"eval_paws-pos_runtime": 0.6684,
|
1418 |
+
"eval_paws-pos_samples_per_second": 191.51,
|
1419 |
+
"eval_paws-pos_steps_per_second": 1.496,
|
1420 |
+
"step": 120
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 0.10619469026548672,
|
1424 |
+
"eval_global_dataset_loss": 4.385201454162598,
|
1425 |
+
"eval_global_dataset_runtime": 23.0455,
|
1426 |
+
"eval_global_dataset_samples_per_second": 28.769,
|
1427 |
+
"eval_global_dataset_steps_per_second": 0.26,
|
1428 |
+
"step": 120
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 0.10707964601769912,
|
1432 |
+
"grad_norm": 12.284002304077148,
|
1433 |
+
"learning_rate": 4.1391509433962266e-07,
|
1434 |
+
"loss": 3.5291,
|
1435 |
+
"step": 121
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 0.1079646017699115,
|
1439 |
+
"grad_norm": 10.567977905273438,
|
1440 |
+
"learning_rate": 4.1745283018867925e-07,
|
1441 |
+
"loss": 3.8232,
|
1442 |
+
"step": 122
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.1088495575221239,
|
1446 |
+
"grad_norm": 11.508279800415039,
|
1447 |
+
"learning_rate": 4.209905660377359e-07,
|
1448 |
+
"loss": 4.6035,
|
1449 |
+
"step": 123
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.10973451327433628,
|
1453 |
+
"grad_norm": 10.180809020996094,
|
1454 |
+
"learning_rate": 4.2452830188679244e-07,
|
1455 |
+
"loss": 3.7607,
|
1456 |
+
"step": 124
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 0.11061946902654868,
|
1460 |
+
"grad_norm": 9.519749641418457,
|
1461 |
+
"learning_rate": 4.280660377358491e-07,
|
1462 |
+
"loss": 3.8461,
|
1463 |
+
"step": 125
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.11150442477876106,
|
1467 |
+
"grad_norm": 11.971588134765625,
|
1468 |
+
"learning_rate": 4.3160377358490563e-07,
|
1469 |
+
"loss": 3.3413,
|
1470 |
+
"step": 126
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 0.11238938053097346,
|
1474 |
+
"grad_norm": 9.211153984069824,
|
1475 |
+
"learning_rate": 4.351415094339623e-07,
|
1476 |
+
"loss": 4.2777,
|
1477 |
+
"step": 127
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 0.11327433628318584,
|
1481 |
+
"grad_norm": 12.393014907836914,
|
1482 |
+
"learning_rate": 4.386792452830189e-07,
|
1483 |
+
"loss": 4.3597,
|
1484 |
+
"step": 128
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.11415929203539824,
|
1488 |
+
"grad_norm": 14.332024574279785,
|
1489 |
+
"learning_rate": 4.422169811320755e-07,
|
1490 |
+
"loss": 3.9046,
|
1491 |
+
"step": 129
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 0.11504424778761062,
|
1495 |
+
"grad_norm": 10.091246604919434,
|
1496 |
+
"learning_rate": 4.4575471698113207e-07,
|
1497 |
+
"loss": 4.0527,
|
1498 |
+
"step": 130
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 0.11592920353982301,
|
1502 |
+
"grad_norm": 15.043377876281738,
|
1503 |
+
"learning_rate": 4.492924528301887e-07,
|
1504 |
+
"loss": 5.0883,
|
1505 |
+
"step": 131
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 0.1168141592920354,
|
1509 |
+
"grad_norm": 12.942100524902344,
|
1510 |
+
"learning_rate": 4.5283018867924526e-07,
|
1511 |
+
"loss": 3.8308,
|
1512 |
+
"step": 132
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.11769911504424779,
|
1516 |
+
"grad_norm": 11.961737632751465,
|
1517 |
+
"learning_rate": 4.563679245283019e-07,
|
1518 |
+
"loss": 3.572,
|
1519 |
+
"step": 133
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 0.11858407079646018,
|
1523 |
+
"grad_norm": 12.325026512145996,
|
1524 |
+
"learning_rate": 4.599056603773585e-07,
|
1525 |
+
"loss": 3.4299,
|
1526 |
+
"step": 134
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.11946902654867257,
|
1530 |
+
"grad_norm": 12.118773460388184,
|
1531 |
+
"learning_rate": 4.6344339622641515e-07,
|
1532 |
+
"loss": 4.1541,
|
1533 |
+
"step": 135
|
1534 |
+
},
|
1535 |
+
{
|
1536 |
+
"epoch": 0.12035398230088495,
|
1537 |
+
"grad_norm": 11.99026107788086,
|
1538 |
+
"learning_rate": 4.669811320754717e-07,
|
1539 |
+
"loss": 3.584,
|
1540 |
+
"step": 136
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"epoch": 0.12123893805309735,
|
1544 |
+
"grad_norm": 15.083515167236328,
|
1545 |
+
"learning_rate": 4.7051886792452834e-07,
|
1546 |
+
"loss": 5.0977,
|
1547 |
+
"step": 137
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 0.12212389380530973,
|
1551 |
+
"grad_norm": 15.059394836425781,
|
1552 |
+
"learning_rate": 4.740566037735849e-07,
|
1553 |
+
"loss": 4.6769,
|
1554 |
+
"step": 138
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.12300884955752213,
|
1558 |
+
"grad_norm": 8.864882469177246,
|
1559 |
+
"learning_rate": 4.775943396226415e-07,
|
1560 |
+
"loss": 3.8396,
|
1561 |
+
"step": 139
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 0.12389380530973451,
|
1565 |
+
"grad_norm": 12.116555213928223,
|
1566 |
+
"learning_rate": 4.811320754716981e-07,
|
1567 |
+
"loss": 3.2875,
|
1568 |
+
"step": 140
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.12477876106194691,
|
1572 |
+
"grad_norm": 14.214646339416504,
|
1573 |
+
"learning_rate": 4.846698113207547e-07,
|
1574 |
+
"loss": 4.1946,
|
1575 |
+
"step": 141
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.1256637168141593,
|
1579 |
+
"grad_norm": 16.207908630371094,
|
1580 |
+
"learning_rate": 4.882075471698113e-07,
|
1581 |
+
"loss": 4.9602,
|
1582 |
+
"step": 142
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 0.12654867256637167,
|
1586 |
+
"grad_norm": 11.662668228149414,
|
1587 |
+
"learning_rate": 4.917452830188679e-07,
|
1588 |
+
"loss": 4.1531,
|
1589 |
+
"step": 143
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"epoch": 0.12743362831858407,
|
1593 |
+
"grad_norm": 12.429448127746582,
|
1594 |
+
"learning_rate": 4.952830188679246e-07,
|
1595 |
+
"loss": 3.8351,
|
1596 |
+
"step": 144
|
1597 |
+
},
|
1598 |
+
{
|
1599 |
+
"epoch": 0.12831858407079647,
|
1600 |
+
"grad_norm": 11.522616386413574,
|
1601 |
+
"learning_rate": 4.988207547169812e-07,
|
1602 |
+
"loss": 3.112,
|
1603 |
+
"step": 145
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 0.12920353982300886,
|
1607 |
+
"grad_norm": 14.556803703308105,
|
1608 |
+
"learning_rate": 5.023584905660377e-07,
|
1609 |
+
"loss": 2.3145,
|
1610 |
+
"step": 146
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.13008849557522123,
|
1614 |
+
"grad_norm": 12.348714828491211,
|
1615 |
+
"learning_rate": 5.058962264150944e-07,
|
1616 |
+
"loss": 4.0989,
|
1617 |
+
"step": 147
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 0.13097345132743363,
|
1621 |
+
"grad_norm": 13.150403022766113,
|
1622 |
+
"learning_rate": 5.094339622641509e-07,
|
1623 |
+
"loss": 3.2173,
|
1624 |
+
"step": 148
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 0.13185840707964602,
|
1628 |
+
"grad_norm": 12.066205978393555,
|
1629 |
+
"learning_rate": 5.129716981132076e-07,
|
1630 |
+
"loss": 2.7913,
|
1631 |
+
"step": 149
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 0.13274336283185842,
|
1635 |
+
"grad_norm": 11.519116401672363,
|
1636 |
+
"learning_rate": 5.165094339622641e-07,
|
1637 |
+
"loss": 3.7627,
|
1638 |
+
"step": 150
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.1336283185840708,
|
1642 |
+
"grad_norm": 12.59196662902832,
|
1643 |
+
"learning_rate": 5.200471698113208e-07,
|
1644 |
+
"loss": 3.3669,
|
1645 |
+
"step": 151
|
1646 |
+
},
|
1647 |
+
{
|
1648 |
+
"epoch": 0.13451327433628318,
|
1649 |
+
"grad_norm": 13.791536331176758,
|
1650 |
+
"learning_rate": 5.235849056603773e-07,
|
1651 |
+
"loss": 2.6775,
|
1652 |
+
"step": 152
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.13539823008849558,
|
1656 |
+
"grad_norm": 11.906597137451172,
|
1657 |
+
"learning_rate": 5.27122641509434e-07,
|
1658 |
+
"loss": 3.2804,
|
1659 |
+
"step": 153
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.13628318584070798,
|
1663 |
+
"grad_norm": 11.267363548278809,
|
1664 |
+
"learning_rate": 5.306603773584905e-07,
|
1665 |
+
"loss": 3.0676,
|
1666 |
+
"step": 154
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"epoch": 0.13716814159292035,
|
1670 |
+
"grad_norm": 12.373686790466309,
|
1671 |
+
"learning_rate": 5.341981132075471e-07,
|
1672 |
+
"loss": 3.1559,
|
1673 |
+
"step": 155
|
1674 |
+
},
|
1675 |
+
{
|
1676 |
+
"epoch": 0.13805309734513274,
|
1677 |
+
"grad_norm": 13.258451461791992,
|
1678 |
+
"learning_rate": 5.377358490566038e-07,
|
1679 |
+
"loss": 2.6638,
|
1680 |
+
"step": 156
|
1681 |
+
},
|
1682 |
+
{
|
1683 |
+
"epoch": 0.13893805309734514,
|
1684 |
+
"grad_norm": 12.79727554321289,
|
1685 |
+
"learning_rate": 5.412735849056604e-07,
|
1686 |
+
"loss": 2.8045,
|
1687 |
+
"step": 157
|
1688 |
+
},
|
1689 |
+
{
|
1690 |
+
"epoch": 0.13982300884955753,
|
1691 |
+
"grad_norm": 13.88683032989502,
|
1692 |
+
"learning_rate": 5.44811320754717e-07,
|
1693 |
+
"loss": 4.0568,
|
1694 |
+
"step": 158
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.1407079646017699,
|
1698 |
+
"grad_norm": 12.57358169555664,
|
1699 |
+
"learning_rate": 5.483490566037736e-07,
|
1700 |
+
"loss": 2.7554,
|
1701 |
+
"step": 159
|
1702 |
+
},
|
1703 |
+
{
|
1704 |
+
"epoch": 0.1415929203539823,
|
1705 |
+
"grad_norm": 14.520818710327148,
|
1706 |
+
"learning_rate": 5.518867924528302e-07,
|
1707 |
+
"loss": 3.7407,
|
1708 |
+
"step": 160
|
1709 |
+
},
|
1710 |
+
{
|
1711 |
+
"epoch": 0.1415929203539823,
|
1712 |
+
"eval_Qnli-dev_cosine_accuracy": 0.62890625,
|
1713 |
+
"eval_Qnli-dev_cosine_accuracy_threshold": 0.9045097827911377,
|
1714 |
+
"eval_Qnli-dev_cosine_ap": 0.6193527955003784,
|
1715 |
+
"eval_Qnli-dev_cosine_f1": 0.6397415185783522,
|
1716 |
+
"eval_Qnli-dev_cosine_f1_threshold": 0.8351442813873291,
|
1717 |
+
"eval_Qnli-dev_cosine_precision": 0.5169712793733682,
|
1718 |
+
"eval_Qnli-dev_cosine_recall": 0.8389830508474576,
|
1719 |
+
"eval_Qnli-dev_dot_accuracy": 0.62890625,
|
1720 |
+
"eval_Qnli-dev_dot_accuracy_threshold": 694.7778930664062,
|
1721 |
+
"eval_Qnli-dev_dot_ap": 0.6194150916988216,
|
1722 |
+
"eval_Qnli-dev_dot_f1": 0.6397415185783522,
|
1723 |
+
"eval_Qnli-dev_dot_f1_threshold": 641.4969482421875,
|
1724 |
+
"eval_Qnli-dev_dot_precision": 0.5169712793733682,
|
1725 |
+
"eval_Qnli-dev_dot_recall": 0.8389830508474576,
|
1726 |
+
"eval_Qnli-dev_euclidean_accuracy": 0.62890625,
|
1727 |
+
"eval_Qnli-dev_euclidean_accuracy_threshold": 12.111844062805176,
|
1728 |
+
"eval_Qnli-dev_euclidean_ap": 0.6193576186776235,
|
1729 |
+
"eval_Qnli-dev_euclidean_f1": 0.6397415185783522,
|
1730 |
+
"eval_Qnli-dev_euclidean_f1_threshold": 15.914146423339844,
|
1731 |
+
"eval_Qnli-dev_euclidean_precision": 0.5169712793733682,
|
1732 |
+
"eval_Qnli-dev_euclidean_recall": 0.8389830508474576,
|
1733 |
+
"eval_Qnli-dev_manhattan_accuracy": 0.646484375,
|
1734 |
+
"eval_Qnli-dev_manhattan_accuracy_threshold": 245.2164306640625,
|
1735 |
+
"eval_Qnli-dev_manhattan_ap": 0.6417015148414534,
|
1736 |
+
"eval_Qnli-dev_manhattan_f1": 0.6521060842433698,
|
1737 |
+
"eval_Qnli-dev_manhattan_f1_threshold": 303.317626953125,
|
1738 |
+
"eval_Qnli-dev_manhattan_precision": 0.5160493827160494,
|
1739 |
+
"eval_Qnli-dev_manhattan_recall": 0.885593220338983,
|
1740 |
+
"eval_Qnli-dev_max_accuracy": 0.646484375,
|
1741 |
+
"eval_Qnli-dev_max_accuracy_threshold": 694.7778930664062,
|
1742 |
+
"eval_Qnli-dev_max_ap": 0.6417015148414534,
|
1743 |
+
"eval_Qnli-dev_max_f1": 0.6521060842433698,
|
1744 |
+
"eval_Qnli-dev_max_f1_threshold": 641.4969482421875,
|
1745 |
+
"eval_Qnli-dev_max_precision": 0.5169712793733682,
|
1746 |
+
"eval_Qnli-dev_max_recall": 0.885593220338983,
|
1747 |
+
"eval_allNLI-dev_cosine_accuracy": 0.66796875,
|
1748 |
+
"eval_allNLI-dev_cosine_accuracy_threshold": 0.9767438173294067,
|
1749 |
+
"eval_allNLI-dev_cosine_ap": 0.38624833037583434,
|
1750 |
+
"eval_allNLI-dev_cosine_f1": 0.5100182149362477,
|
1751 |
+
"eval_allNLI-dev_cosine_f1_threshold": 0.8540960550308228,
|
1752 |
+
"eval_allNLI-dev_cosine_precision": 0.3723404255319149,
|
1753 |
+
"eval_allNLI-dev_cosine_recall": 0.8092485549132948,
|
1754 |
+
"eval_allNLI-dev_dot_accuracy": 0.66796875,
|
1755 |
+
"eval_allNLI-dev_dot_accuracy_threshold": 750.345458984375,
|
1756 |
+
"eval_allNLI-dev_dot_ap": 0.3862261253421553,
|
1757 |
+
"eval_allNLI-dev_dot_f1": 0.5100182149362477,
|
1758 |
+
"eval_allNLI-dev_dot_f1_threshold": 656.0940551757812,
|
1759 |
+
"eval_allNLI-dev_dot_precision": 0.3723404255319149,
|
1760 |
+
"eval_allNLI-dev_dot_recall": 0.8092485549132948,
|
1761 |
+
"eval_allNLI-dev_euclidean_accuracy": 0.66796875,
|
1762 |
+
"eval_allNLI-dev_euclidean_accuracy_threshold": 5.977196216583252,
|
1763 |
+
"eval_allNLI-dev_euclidean_ap": 0.38624380046547035,
|
1764 |
+
"eval_allNLI-dev_euclidean_f1": 0.5100182149362477,
|
1765 |
+
"eval_allNLI-dev_euclidean_f1_threshold": 14.971920013427734,
|
1766 |
+
"eval_allNLI-dev_euclidean_precision": 0.3723404255319149,
|
1767 |
+
"eval_allNLI-dev_euclidean_recall": 0.8092485549132948,
|
1768 |
+
"eval_allNLI-dev_manhattan_accuracy": 0.6640625,
|
1769 |
+
"eval_allNLI-dev_manhattan_accuracy_threshold": 78.52637481689453,
|
1770 |
+
"eval_allNLI-dev_manhattan_ap": 0.3898187083180651,
|
1771 |
+
"eval_allNLI-dev_manhattan_f1": 0.5062388591800357,
|
1772 |
+
"eval_allNLI-dev_manhattan_f1_threshold": 285.7745361328125,
|
1773 |
+
"eval_allNLI-dev_manhattan_precision": 0.36597938144329895,
|
1774 |
+
"eval_allNLI-dev_manhattan_recall": 0.8208092485549133,
|
1775 |
+
"eval_allNLI-dev_max_accuracy": 0.66796875,
|
1776 |
+
"eval_allNLI-dev_max_accuracy_threshold": 750.345458984375,
|
1777 |
+
"eval_allNLI-dev_max_ap": 0.3898187083180651,
|
1778 |
+
"eval_allNLI-dev_max_f1": 0.5100182149362477,
|
1779 |
+
"eval_allNLI-dev_max_f1_threshold": 656.0940551757812,
|
1780 |
+
"eval_allNLI-dev_max_precision": 0.3723404255319149,
|
1781 |
+
"eval_allNLI-dev_max_recall": 0.8208092485549133,
|
1782 |
+
"eval_sequential_score": 0.6417015148414534,
|
1783 |
+
"eval_sts-test_pearson_cosine": 0.2853943019391156,
|
1784 |
+
"eval_sts-test_pearson_dot": 0.28526334639473966,
|
1785 |
+
"eval_sts-test_pearson_euclidean": 0.29405773952219494,
|
1786 |
+
"eval_sts-test_pearson_manhattan": 0.3110310476615048,
|
1787 |
+
"eval_sts-test_pearson_max": 0.3110310476615048,
|
1788 |
+
"eval_sts-test_spearman_cosine": 0.31414239162305135,
|
1789 |
+
"eval_sts-test_spearman_dot": 0.31380407209449446,
|
1790 |
+
"eval_sts-test_spearman_euclidean": 0.3141516551339523,
|
1791 |
+
"eval_sts-test_spearman_manhattan": 0.3366243060620438,
|
1792 |
+
"eval_sts-test_spearman_max": 0.3366243060620438,
|
1793 |
+
"eval_vitaminc-pairs_loss": 2.7439002990722656,
|
1794 |
+
"eval_vitaminc-pairs_runtime": 3.7639,
|
1795 |
+
"eval_vitaminc-pairs_samples_per_second": 34.007,
|
1796 |
+
"eval_vitaminc-pairs_steps_per_second": 0.266,
|
1797 |
+
"step": 160
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 0.1415929203539823,
|
1801 |
+
"eval_negation-triplets_loss": 4.63640022277832,
|
1802 |
+
"eval_negation-triplets_runtime": 0.7072,
|
1803 |
+
"eval_negation-triplets_samples_per_second": 180.999,
|
1804 |
+
"eval_negation-triplets_steps_per_second": 1.414,
|
1805 |
+
"step": 160
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 0.1415929203539823,
|
1809 |
+
"eval_scitail-pairs-pos_loss": 1.0088545083999634,
|
1810 |
+
"eval_scitail-pairs-pos_runtime": 0.8123,
|
1811 |
+
"eval_scitail-pairs-pos_samples_per_second": 157.577,
|
1812 |
+
"eval_scitail-pairs-pos_steps_per_second": 1.231,
|
1813 |
+
"step": 160
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 0.1415929203539823,
|
1817 |
+
"eval_scitail-pairs-qa_loss": 1.1228678226470947,
|
1818 |
+
"eval_scitail-pairs-qa_runtime": 0.5444,
|
1819 |
+
"eval_scitail-pairs-qa_samples_per_second": 235.115,
|
1820 |
+
"eval_scitail-pairs-qa_steps_per_second": 1.837,
|
1821 |
+
"step": 160
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 0.1415929203539823,
|
1825 |
+
"eval_xsum-pairs_loss": 5.4869818687438965,
|
1826 |
+
"eval_xsum-pairs_runtime": 2.8888,
|
1827 |
+
"eval_xsum-pairs_samples_per_second": 44.308,
|
1828 |
+
"eval_xsum-pairs_steps_per_second": 0.346,
|
1829 |
+
"step": 160
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.1415929203539823,
|
1833 |
+
"eval_sciq_pairs_loss": 0.628353476524353,
|
1834 |
+
"eval_sciq_pairs_runtime": 3.8061,
|
1835 |
+
"eval_sciq_pairs_samples_per_second": 33.631,
|
1836 |
+
"eval_sciq_pairs_steps_per_second": 0.263,
|
1837 |
+
"step": 160
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 0.1415929203539823,
|
1841 |
+
"eval_qasc_pairs_loss": 2.593322277069092,
|
1842 |
+
"eval_qasc_pairs_runtime": 0.6728,
|
1843 |
+
"eval_qasc_pairs_samples_per_second": 190.241,
|
1844 |
+
"eval_qasc_pairs_steps_per_second": 1.486,
|
1845 |
+
"step": 160
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.1415929203539823,
|
1849 |
+
"eval_openbookqa_pairs_loss": 4.394308090209961,
|
1850 |
+
"eval_openbookqa_pairs_runtime": 0.5852,
|
1851 |
+
"eval_openbookqa_pairs_samples_per_second": 218.729,
|
1852 |
+
"eval_openbookqa_pairs_steps_per_second": 1.709,
|
1853 |
+
"step": 160
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 0.1415929203539823,
|
1857 |
+
"eval_msmarco_pairs_loss": 5.656517505645752,
|
1858 |
+
"eval_msmarco_pairs_runtime": 1.2571,
|
1859 |
+
"eval_msmarco_pairs_samples_per_second": 101.822,
|
1860 |
+
"eval_msmarco_pairs_steps_per_second": 0.795,
|
1861 |
+
"step": 160
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 0.1415929203539823,
|
1865 |
+
"eval_nq_pairs_loss": 5.986983776092529,
|
1866 |
+
"eval_nq_pairs_runtime": 2.5075,
|
1867 |
+
"eval_nq_pairs_samples_per_second": 51.047,
|
1868 |
+
"eval_nq_pairs_steps_per_second": 0.399,
|
1869 |
+
"step": 160
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.1415929203539823,
|
1873 |
+
"eval_trivia_pairs_loss": 5.694415092468262,
|
1874 |
+
"eval_trivia_pairs_runtime": 3.6302,
|
1875 |
+
"eval_trivia_pairs_samples_per_second": 35.26,
|
1876 |
+
"eval_trivia_pairs_steps_per_second": 0.275,
|
1877 |
+
"step": 160
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"epoch": 0.1415929203539823,
|
1881 |
+
"eval_gooaq_pairs_loss": 5.3856658935546875,
|
1882 |
+
"eval_gooaq_pairs_runtime": 0.9618,
|
1883 |
+
"eval_gooaq_pairs_samples_per_second": 133.082,
|
1884 |
+
"eval_gooaq_pairs_steps_per_second": 1.04,
|
1885 |
+
"step": 160
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.1415929203539823,
|
1889 |
+
"eval_paws-pos_loss": 0.3622308671474457,
|
1890 |
+
"eval_paws-pos_runtime": 0.6678,
|
1891 |
+
"eval_paws-pos_samples_per_second": 191.674,
|
1892 |
+
"eval_paws-pos_steps_per_second": 1.497,
|
1893 |
+
"step": 160
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 0.1415929203539823,
|
1897 |
+
"eval_global_dataset_loss": 3.401135206222534,
|
1898 |
+
"eval_global_dataset_runtime": 23.0422,
|
1899 |
+
"eval_global_dataset_samples_per_second": 28.773,
|
1900 |
+
"eval_global_dataset_steps_per_second": 0.26,
|
1901 |
+
"step": 160
|
1902 |
+
}
|
1903 |
+
],
|
1904 |
+
"logging_steps": 1,
|
1905 |
+
"max_steps": 3390,
|
1906 |
+
"num_input_tokens_seen": 0,
|
1907 |
+
"num_train_epochs": 3,
|
1908 |
+
"save_steps": 80,
|
1909 |
+
"stateful_callbacks": {
|
1910 |
+
"TrainerControl": {
|
1911 |
+
"args": {
|
1912 |
+
"should_epoch_stop": false,
|
1913 |
+
"should_evaluate": false,
|
1914 |
+
"should_log": false,
|
1915 |
+
"should_save": true,
|
1916 |
+
"should_training_stop": false
|
1917 |
+
},
|
1918 |
+
"attributes": {}
|
1919 |
+
}
|
1920 |
+
},
|
1921 |
+
"total_flos": 0.0,
|
1922 |
+
"train_batch_size": 42,
|
1923 |
+
"trial_name": null,
|
1924 |
+
"trial_params": null
|
1925 |
+
}
|
checkpoint-160/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bfb21b1a8b0022475cba81f0306eaa079a06c682d78c599327457cfd397d216
|
3 |
+
size 5688
|