bobox commited on
Commit
110436b
1 Parent(s): d1dc986

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -117
README.md CHANGED
@@ -86,36 +86,6 @@ model-index:
86
  name: sts test
87
  type: sts-test
88
  metrics:
89
- - type: pearson_cosine
90
- value: 0.4121931859939639
91
- name: Pearson Cosine
92
- - type: spearman_cosine
93
- value: 0.4188435395565816
94
- name: Spearman Cosine
95
- - type: pearson_manhattan
96
- value: 0.43722674169112186
97
- name: Pearson Manhattan
98
- - type: spearman_manhattan
99
- value: 0.4419489193187135
100
- name: Spearman Manhattan
101
- - type: pearson_euclidean
102
- value: 0.4165228130620452
103
- name: Pearson Euclidean
104
- - type: spearman_euclidean
105
- value: 0.42369527784158983
106
- name: Spearman Euclidean
107
- - type: pearson_dot
108
- value: 0.13511926964573803
109
- name: Pearson Dot
110
- - type: spearman_dot
111
- value: 0.13030376975519165
112
- name: Spearman Dot
113
- - type: pearson_max
114
- value: 0.43722674169112186
115
- name: Pearson Max
116
- - type: spearman_max
117
- value: 0.4419489193187135
118
- name: Spearman Max
119
  - type: pearson_cosine
120
  value: 0.7746195773286169
121
  name: Pearson Cosine
@@ -176,42 +146,13 @@ model-index:
176
  - type: spearman_max
177
  value: 0.7193195268794856
178
  name: Spearman Max
179
- - type: pearson_cosine
180
- value: 0.7408543477349779
181
- name: Pearson Cosine
182
- - type: spearman_cosine
183
- value: 0.7193195268794856
184
- name: Spearman Cosine
185
- - type: pearson_manhattan
186
- value: 0.7347205138738226
187
- name: Pearson Manhattan
188
- - type: spearman_manhattan
189
- value: 0.716277121285963
190
- name: Spearman Manhattan
191
- - type: pearson_euclidean
192
- value: 0.7317357204840789
193
- name: Pearson Euclidean
194
- - type: spearman_euclidean
195
- value: 0.7133569462956698
196
- name: Spearman Euclidean
197
- - type: pearson_dot
198
- value: 0.5412116736741877
199
- name: Pearson Dot
200
- - type: spearman_dot
201
- value: 0.5324862690078268
202
- name: Spearman Dot
203
- - type: pearson_max
204
- value: 0.7408543477349779
205
- name: Pearson Max
206
- - type: spearman_max
207
- value: 0.7193195268794856
208
- name: Spearman Max
209
  ---
210
 
211
  # SentenceTransformer based on microsoft/deberta-v3-small
212
 
213
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
214
 
 
215
  ## Model Details
216
 
217
  ### Model Description
@@ -315,22 +256,7 @@ You can finetune this model on your own dataset.
315
 
316
  ### Metrics
317
 
318
- #### Semantic Similarity
319
- * Dataset: `sts-test`
320
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
321
 
322
- | Metric | Value |
323
- |:--------------------|:-----------|
324
- | pearson_cosine | 0.4122 |
325
- | **spearman_cosine** | **0.4188** |
326
- | pearson_manhattan | 0.4372 |
327
- | spearman_manhattan | 0.4419 |
328
- | pearson_euclidean | 0.4165 |
329
- | spearman_euclidean | 0.4237 |
330
- | pearson_dot | 0.1351 |
331
- | spearman_dot | 0.1303 |
332
- | pearson_max | 0.4372 |
333
- | spearman_max | 0.4419 |
334
 
335
  #### Semantic Similarity
336
  * Dataset: `sts-test`
@@ -349,39 +275,7 @@ You can finetune this model on your own dataset.
349
  | pearson_max | 0.7746 |
350
  | spearman_max | 0.769 |
351
 
352
- #### Semantic Similarity
353
- * Dataset: `sts-test`
354
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
355
-
356
- | Metric | Value |
357
- |:--------------------|:-----------|
358
- | pearson_cosine | 0.7409 |
359
- | **spearman_cosine** | **0.7193** |
360
- | pearson_manhattan | 0.7347 |
361
- | spearman_manhattan | 0.7163 |
362
- | pearson_euclidean | 0.7317 |
363
- | spearman_euclidean | 0.7134 |
364
- | pearson_dot | 0.5412 |
365
- | spearman_dot | 0.5325 |
366
- | pearson_max | 0.7409 |
367
- | spearman_max | 0.7193 |
368
-
369
- #### Semantic Similarity
370
- * Dataset: `sts-test`
371
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
372
 
373
- | Metric | Value |
374
- |:--------------------|:-----------|
375
- | pearson_cosine | 0.7409 |
376
- | **spearman_cosine** | **0.7193** |
377
- | pearson_manhattan | 0.7347 |
378
- | spearman_manhattan | 0.7163 |
379
- | pearson_euclidean | 0.7317 |
380
- | spearman_euclidean | 0.7134 |
381
- | pearson_dot | 0.5412 |
382
- | spearman_dot | 0.5325 |
383
- | pearson_max | 0.7409 |
384
- | spearman_max | 0.7193 |
385
 
386
  <!--
387
  ## Bias, Risks and Limitations
@@ -1227,16 +1121,6 @@ You can finetune this model on your own dataset.
1227
  }
1228
  ```
1229
 
1230
- #### CoSENTLoss
1231
- ```bibtex
1232
- @online{kexuefm-8847,
1233
- title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1234
- author={Su Jianlin},
1235
- year={2022},
1236
- month={Jan},
1237
- url={https://kexue.fm/archives/8847},
1238
- }
1239
- ```
1240
 
1241
  #### GISTEmbedLoss
1242
  ```bibtex
 
86
  name: sts test
87
  type: sts-test
88
  metrics:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  - type: pearson_cosine
90
  value: 0.7746195773286169
91
  name: Pearson Cosine
 
146
  - type: spearman_max
147
  value: 0.7193195268794856
148
  name: Spearman Max
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
  ---
150
 
151
  # SentenceTransformer based on microsoft/deberta-v3-small
152
 
153
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
154
 
155
+
156
  ## Model Details
157
 
158
  ### Model Description
 
256
 
257
  ### Metrics
258
 
 
 
 
259
 
 
 
 
 
 
 
 
 
 
 
 
 
260
 
261
  #### Semantic Similarity
262
  * Dataset: `sts-test`
 
275
  | pearson_max | 0.7746 |
276
  | spearman_max | 0.769 |
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
 
 
 
 
 
 
 
 
 
 
 
 
 
279
 
280
  <!--
281
  ## Bias, Risks and Limitations
 
1121
  }
1122
  ```
1123
 
 
 
 
 
 
 
 
 
 
 
1124
 
1125
  #### GISTEmbedLoss
1126
  ```bibtex