Update README.md
Browse files
README.md
CHANGED
@@ -86,36 +86,6 @@ model-index:
|
|
86 |
name: sts test
|
87 |
type: sts-test
|
88 |
metrics:
|
89 |
-
- type: pearson_cosine
|
90 |
-
value: 0.4121931859939639
|
91 |
-
name: Pearson Cosine
|
92 |
-
- type: spearman_cosine
|
93 |
-
value: 0.4188435395565816
|
94 |
-
name: Spearman Cosine
|
95 |
-
- type: pearson_manhattan
|
96 |
-
value: 0.43722674169112186
|
97 |
-
name: Pearson Manhattan
|
98 |
-
- type: spearman_manhattan
|
99 |
-
value: 0.4419489193187135
|
100 |
-
name: Spearman Manhattan
|
101 |
-
- type: pearson_euclidean
|
102 |
-
value: 0.4165228130620452
|
103 |
-
name: Pearson Euclidean
|
104 |
-
- type: spearman_euclidean
|
105 |
-
value: 0.42369527784158983
|
106 |
-
name: Spearman Euclidean
|
107 |
-
- type: pearson_dot
|
108 |
-
value: 0.13511926964573803
|
109 |
-
name: Pearson Dot
|
110 |
-
- type: spearman_dot
|
111 |
-
value: 0.13030376975519165
|
112 |
-
name: Spearman Dot
|
113 |
-
- type: pearson_max
|
114 |
-
value: 0.43722674169112186
|
115 |
-
name: Pearson Max
|
116 |
-
- type: spearman_max
|
117 |
-
value: 0.4419489193187135
|
118 |
-
name: Spearman Max
|
119 |
- type: pearson_cosine
|
120 |
value: 0.7746195773286169
|
121 |
name: Pearson Cosine
|
@@ -176,42 +146,13 @@ model-index:
|
|
176 |
- type: spearman_max
|
177 |
value: 0.7193195268794856
|
178 |
name: Spearman Max
|
179 |
-
- type: pearson_cosine
|
180 |
-
value: 0.7408543477349779
|
181 |
-
name: Pearson Cosine
|
182 |
-
- type: spearman_cosine
|
183 |
-
value: 0.7193195268794856
|
184 |
-
name: Spearman Cosine
|
185 |
-
- type: pearson_manhattan
|
186 |
-
value: 0.7347205138738226
|
187 |
-
name: Pearson Manhattan
|
188 |
-
- type: spearman_manhattan
|
189 |
-
value: 0.716277121285963
|
190 |
-
name: Spearman Manhattan
|
191 |
-
- type: pearson_euclidean
|
192 |
-
value: 0.7317357204840789
|
193 |
-
name: Pearson Euclidean
|
194 |
-
- type: spearman_euclidean
|
195 |
-
value: 0.7133569462956698
|
196 |
-
name: Spearman Euclidean
|
197 |
-
- type: pearson_dot
|
198 |
-
value: 0.5412116736741877
|
199 |
-
name: Pearson Dot
|
200 |
-
- type: spearman_dot
|
201 |
-
value: 0.5324862690078268
|
202 |
-
name: Spearman Dot
|
203 |
-
- type: pearson_max
|
204 |
-
value: 0.7408543477349779
|
205 |
-
name: Pearson Max
|
206 |
-
- type: spearman_max
|
207 |
-
value: 0.7193195268794856
|
208 |
-
name: Spearman Max
|
209 |
---
|
210 |
|
211 |
# SentenceTransformer based on microsoft/deberta-v3-small
|
212 |
|
213 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
214 |
|
|
|
215 |
## Model Details
|
216 |
|
217 |
### Model Description
|
@@ -315,22 +256,7 @@ You can finetune this model on your own dataset.
|
|
315 |
|
316 |
### Metrics
|
317 |
|
318 |
-
#### Semantic Similarity
|
319 |
-
* Dataset: `sts-test`
|
320 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
321 |
|
322 |
-
| Metric | Value |
|
323 |
-
|:--------------------|:-----------|
|
324 |
-
| pearson_cosine | 0.4122 |
|
325 |
-
| **spearman_cosine** | **0.4188** |
|
326 |
-
| pearson_manhattan | 0.4372 |
|
327 |
-
| spearman_manhattan | 0.4419 |
|
328 |
-
| pearson_euclidean | 0.4165 |
|
329 |
-
| spearman_euclidean | 0.4237 |
|
330 |
-
| pearson_dot | 0.1351 |
|
331 |
-
| spearman_dot | 0.1303 |
|
332 |
-
| pearson_max | 0.4372 |
|
333 |
-
| spearman_max | 0.4419 |
|
334 |
|
335 |
#### Semantic Similarity
|
336 |
* Dataset: `sts-test`
|
@@ -349,39 +275,7 @@ You can finetune this model on your own dataset.
|
|
349 |
| pearson_max | 0.7746 |
|
350 |
| spearman_max | 0.769 |
|
351 |
|
352 |
-
#### Semantic Similarity
|
353 |
-
* Dataset: `sts-test`
|
354 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
355 |
-
|
356 |
-
| Metric | Value |
|
357 |
-
|:--------------------|:-----------|
|
358 |
-
| pearson_cosine | 0.7409 |
|
359 |
-
| **spearman_cosine** | **0.7193** |
|
360 |
-
| pearson_manhattan | 0.7347 |
|
361 |
-
| spearman_manhattan | 0.7163 |
|
362 |
-
| pearson_euclidean | 0.7317 |
|
363 |
-
| spearman_euclidean | 0.7134 |
|
364 |
-
| pearson_dot | 0.5412 |
|
365 |
-
| spearman_dot | 0.5325 |
|
366 |
-
| pearson_max | 0.7409 |
|
367 |
-
| spearman_max | 0.7193 |
|
368 |
-
|
369 |
-
#### Semantic Similarity
|
370 |
-
* Dataset: `sts-test`
|
371 |
-
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
372 |
|
373 |
-
| Metric | Value |
|
374 |
-
|:--------------------|:-----------|
|
375 |
-
| pearson_cosine | 0.7409 |
|
376 |
-
| **spearman_cosine** | **0.7193** |
|
377 |
-
| pearson_manhattan | 0.7347 |
|
378 |
-
| spearman_manhattan | 0.7163 |
|
379 |
-
| pearson_euclidean | 0.7317 |
|
380 |
-
| spearman_euclidean | 0.7134 |
|
381 |
-
| pearson_dot | 0.5412 |
|
382 |
-
| spearman_dot | 0.5325 |
|
383 |
-
| pearson_max | 0.7409 |
|
384 |
-
| spearman_max | 0.7193 |
|
385 |
|
386 |
<!--
|
387 |
## Bias, Risks and Limitations
|
@@ -1227,16 +1121,6 @@ You can finetune this model on your own dataset.
|
|
1227 |
}
|
1228 |
```
|
1229 |
|
1230 |
-
#### CoSENTLoss
|
1231 |
-
```bibtex
|
1232 |
-
@online{kexuefm-8847,
|
1233 |
-
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
1234 |
-
author={Su Jianlin},
|
1235 |
-
year={2022},
|
1236 |
-
month={Jan},
|
1237 |
-
url={https://kexue.fm/archives/8847},
|
1238 |
-
}
|
1239 |
-
```
|
1240 |
|
1241 |
#### GISTEmbedLoss
|
1242 |
```bibtex
|
|
|
86 |
name: sts test
|
87 |
type: sts-test
|
88 |
metrics:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
- type: pearson_cosine
|
90 |
value: 0.7746195773286169
|
91 |
name: Pearson Cosine
|
|
|
146 |
- type: spearman_max
|
147 |
value: 0.7193195268794856
|
148 |
name: Spearman Max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
---
|
150 |
|
151 |
# SentenceTransformer based on microsoft/deberta-v3-small
|
152 |
|
153 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
154 |
|
155 |
+
|
156 |
## Model Details
|
157 |
|
158 |
### Model Description
|
|
|
256 |
|
257 |
### Metrics
|
258 |
|
|
|
|
|
|
|
259 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
#### Semantic Similarity
|
262 |
* Dataset: `sts-test`
|
|
|
275 |
| pearson_max | 0.7746 |
|
276 |
| spearman_max | 0.769 |
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
<!--
|
281 |
## Bias, Risks and Limitations
|
|
|
1121 |
}
|
1122 |
```
|
1123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1124 |
|
1125 |
#### GISTEmbedLoss
|
1126 |
```bibtex
|