add model files
Browse files- .gitattributes +1 -0
- README.md +98 -0
- adapter_config.json +33 -0
- generation_config.json +7 -0
- special_tokens_map.json +34 -0
- tokenizer_config.json +70 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- hypervariance/function-calling-sharegpt
|
5 |
+
---
|
6 |
+
|
7 |
+
# Model Card for Model ID
|
8 |
+
|
9 |
+
Gemma 2B function calling. [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) finetuned on [hypervariance/function-calling-sharegpt](https://huggingface.co/datasets/hypervariance/function-calling-sharegpt).
|
10 |
+
|
11 |
+
## Usage
|
12 |
+
|
13 |
+
Make sure you have the [peft](https://huggingface.co/docs/peft/en/index) package installed. You can install it with `pip install peft`.
|
14 |
+
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import AutoModelForCausalLM , AutoTokenizer
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True, device_map="auto")
|
21 |
+
|
22 |
+
inputs = tokenizer(prompt,return_tensors="pt").to(model.device)
|
23 |
+
|
24 |
+
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
|
25 |
+
|
26 |
+
print(tokenizer.decode(outputs[0]))
|
27 |
+
```
|
28 |
+
|
29 |
+
You can also use sharegpt formatted prompts:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoModelForCausalLM , AutoTokenizer
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained("bodhicitta/gemma-2b-function-call", trust_remote_code=True, device_map="auto")
|
36 |
+
|
37 |
+
chat = [
|
38 |
+
{
|
39 |
+
"from": "system",
|
40 |
+
"value": "SYSTEM PROMPT",
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"from": "human",
|
44 |
+
"value": "USER QUESTION"
|
45 |
+
},
|
46 |
+
]
|
47 |
+
|
48 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
49 |
+
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
outputs = model.generate(**inputs,do_sample=True,temperature=0.1,top_p=0.95,max_new_tokens=100)
|
53 |
+
|
54 |
+
print(tokenizer.decode(outputs[0]))
|
55 |
+
```
|
56 |
+
|
57 |
+
## Prompt template
|
58 |
+
|
59 |
+
```text
|
60 |
+
You are a helpful assistant with access to the following functions. Use them if required -
|
61 |
+
{
|
62 |
+
"name": "function name",
|
63 |
+
"description": "function description",
|
64 |
+
"parameters": {
|
65 |
+
"type": "type (object/number/string)",
|
66 |
+
"properties": {
|
67 |
+
"property_1": {
|
68 |
+
"type": "type",
|
69 |
+
"description": "property description"
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"required": [
|
73 |
+
"property_1"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
To use these functions respond with:
|
79 |
+
<functioncall> {"name": "function_name", "arguments": {"arg_1": "value_1", "arg_1": "value_1", ...}} </functioncall>
|
80 |
+
|
81 |
+
Edge cases you must handle:
|
82 |
+
- If there are no functions that match the user request, you will respond politely that you cannot help.
|
83 |
+
|
84 |
+
User Question:
|
85 |
+
USER_QUESTION
|
86 |
+
```
|
87 |
+
|
88 |
+
Function calls are enclosed in `<functioncall>` `</functioncall>`.
|
89 |
+
|
90 |
+
The model was trained using the same delimiters as [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it):
|
91 |
+
|
92 |
+
```text
|
93 |
+
<bos><start_of_turn>user
|
94 |
+
Write a hello world program<end_of_turn>
|
95 |
+
<start_of_turn>model
|
96 |
+
```
|
97 |
+
|
98 |
+
Use `<end_of_turn>` stop sequence to prevent the model from generating further text.
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.1,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"o_proj",
|
23 |
+
"q_proj",
|
24 |
+
"up_proj",
|
25 |
+
"k_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"v_proj",
|
28 |
+
"down_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.38.1"
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<eos>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"106": {
|
38 |
+
"content": "<start_of_turn>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"107": {
|
46 |
+
"content": "<end_of_turn>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"additional_special_tokens": [
|
55 |
+
"<start_of_turn>",
|
56 |
+
"<end_of_turn>"
|
57 |
+
],
|
58 |
+
"bos_token": "<bos>",
|
59 |
+
"chat_template": "{% for message in messages %}{% if message['from'] == 'system' %}{{ '<start_of_turn>user\\n' + message['value'] }}{% elif message['from'] == 'human' %}{% if loop.index0 == 1 %}{{ '\\nUser Question:\\n' }}{% else %}{{ '<start_of_turn>user\\n' }}{% endif %}{{ message['value'] + '<end_of_turn>' }}{% elif message['from'] == 'gpt' %}{{ '<start_of_turn>model\\n' + message['value'] + ' ' + '<end_of_turn>' }}{% elif message['from'] == 'function_response' %}{{ '<start_of_turn>user\\n' + message['value'] + ' ' + '<end_of_turn>' }}{% endif %}{% if not loop.last %}{{ '\\n' }}{% endif %}{% endfor %}{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% if add_generation_prompt %}{{ '\\n<start_of_turn>model\\n' }}{% endif %}",
|
60 |
+
"clean_up_tokenization_spaces": false,
|
61 |
+
"eos_token": "<eos>",
|
62 |
+
"legacy": null,
|
63 |
+
"model_max_length": 1000000000000000019884624838656,
|
64 |
+
"pad_token": "<eos>",
|
65 |
+
"sp_model_kwargs": {},
|
66 |
+
"spaces_between_special_tokens": false,
|
67 |
+
"tokenizer_class": "GemmaTokenizer",
|
68 |
+
"unk_token": "<unk>",
|
69 |
+
"use_default_system_prompt": false
|
70 |
+
}
|