bofenghuang
commited on
Commit
·
1cdb121
1
Parent(s):
a3037d1
up
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language: fr
|
4 |
+
datasets:
|
5 |
+
- mozilla-foundation/common_voice_13_0
|
6 |
+
tags:
|
7 |
+
- automatic-speech-recognition
|
8 |
---
|
9 |
+
|
10 |
+
# Wav2vec2-CTC-based French Phonemizer
|
11 |
+
|
12 |
+
## Usage
|
13 |
+
|
14 |
+
*Infer audio*
|
15 |
+
|
16 |
+
```python
|
17 |
+
import soundfile as sf
|
18 |
+
import torch
|
19 |
+
from transformers import AutoModelForCTC, AutoProcessor, pipeline
|
20 |
+
|
21 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
23 |
+
|
24 |
+
# Load model
|
25 |
+
model_name_or_path = "bofenghuang/phonemizer-wav2vec2-ctc-french"
|
26 |
+
processor = AutoProcessor.from_pretrained(model_name_or_path)
|
27 |
+
model_sample_rate = processor.feature_extractor.sampling_rate
|
28 |
+
model = AutoModelForCTC.from_pretrained(model_name_or_path, torch_dtype=torch_dtype)
|
29 |
+
model.to(device)
|
30 |
+
|
31 |
+
# Init pipeline
|
32 |
+
pipe = pipeline(
|
33 |
+
"automatic-speech-recognition",
|
34 |
+
model=model,
|
35 |
+
feature_extractor=processor.feature_extractor,
|
36 |
+
tokenizer=processor.tokenizer,
|
37 |
+
torch_dtype=torch_dtype,
|
38 |
+
device=device,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Example audio
|
42 |
+
audio_file_path = "/path/to/example/wav/file"
|
43 |
+
|
44 |
+
# Infer with pipeline
|
45 |
+
result = pipe(audio_file_path)
|
46 |
+
print(result["text"])
|
47 |
+
|
48 |
+
# Infer w/ lower-level api
|
49 |
+
waveform, sample_rate = sf.read(audio_file_path, start=0, frames=-1, dtype="float32", always_2d=False)
|
50 |
+
|
51 |
+
input_dict = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt")
|
52 |
+
|
53 |
+
with torch.inference_mode():
|
54 |
+
input_values = input_dict.input_values.to(device, dtype=torch_dtype)
|
55 |
+
logits = model(input_values).logits
|
56 |
+
|
57 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
58 |
+
predicted_text = processor.batch_decode(predicted_ids)[0]
|
59 |
+
print(predicted_text)
|
60 |
+
```
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
*Phonemes were generated using the following code snippet:*
|
65 |
+
|
66 |
+
```python
|
67 |
+
# !pip install phonemizer
|
68 |
+
from phonemizer.backend import EspeakBackend
|
69 |
+
from phonemizer.separator import Separator
|
70 |
+
|
71 |
+
# initialize the espeak backend for French
|
72 |
+
backend = EspeakBackend("fr-fr", language_switch="remove-flags")
|
73 |
+
|
74 |
+
# separate phones by a space and ignoring words boundaries
|
75 |
+
separator = Separator(phone=None, word=" ", syllable="")
|
76 |
+
|
77 |
+
def phonemize_text_phonemizer(s):
|
78 |
+
return backend.phonemize([s], separator=separator, strip=True, njobs=1)[0]
|
79 |
+
|
80 |
+
input_str = "ce modèle est utilisé pour identifier les phonèmes dans l'audio entrant"
|
81 |
+
print(phonemize_text_phonemizer(input_str))
|
82 |
+
# 'sə modɛl ɛt ytilize puʁ idɑ̃tifje le fonɛm dɑ̃ lodjo ɑ̃tʁɑ̃'
|
83 |
+
```
|
84 |
+
|
85 |
+
## Acknowledgement
|
86 |
+
|
87 |
+
Inspired by [Cnam-LMSSC/wav2vec2-french-phonemizer](https://huggingface.co/Cnam-LMSSC/wav2vec2-french-phonemizer)
|