bofenghuang commited on
Commit
2220ca6
·
1 Parent(s): b4345aa

Update README

Browse files
Files changed (2) hide show
  1. README.md +30 -72
  2. vigogne_logo.png +0 -0
README.md CHANGED
@@ -1,97 +1,55 @@
1
  ---
2
- license: mit
3
- language: fr
4
- thumbnail: null
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- # Vigogne: French Instruct LLaMA
 
 
8
 
9
- This repo contains a low-rank adapter for LLaMA-7b fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset.
10
 
11
- Instructions for running it can be found at https://github.com/tloen/alpaca-lora.
12
 
 
 
 
13
 
14
  ## Usage
15
 
 
 
16
  ```python
17
- import torch
18
  from peft import PeftModel
19
- from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
20
-
21
- PROMPT_DICT = {
22
- "prompt_input": (
23
- "Ci-dessous se trouve une instruction qui décrit une tâche, associée à une entrée qui fournit un contexte supplémentaire. Écrivez une réponse qui complète correctement la demande.\n\n"
24
- "### Instruction:\n{instruction}\n\n### Entrée:\n{input}\n\n### Réponse:\n"
25
- ),
26
- "prompt_no_input": (
27
- "Ci-dessous se trouve une instruction qui décrit une tâche. Écrivez une réponse qui complète correctement la demande.\n\n"
28
- "### Instruction:\n{instruction}\n\n### Réponse:\n"
29
- ),
30
- }
31
-
32
-
33
- device = "cuda"
34
 
35
  tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
36
  model = LlamaForCausalLM.from_pretrained(
37
  "decapoda-research/llama-7b-hf",
38
  load_in_8bit=True,
39
- torch_dtype=torch.float16,
40
  device_map="auto",
41
  )
42
- model = PeftModel.from_pretrained(
43
- model,
44
- "bofenghuang/vigogne-lora-7b",
45
- torch_dtype=torch.float16,
46
- )
47
 
 
48
 
49
- def instruct(
50
- instruction,
51
- input=None,
52
- temperature=0.1,
53
- top_p=1.0,
54
- max_new_tokens=512,
55
- **kwargs,
56
- ):
57
- prompt = (
58
- PROMPT_DICT["prompt_input"].format_map({"instruction": instruction, "input": input})
59
- if input is not None
60
- else PROMPT_DICT["prompt_no_input"].format_map({"instruction": instruction})
61
- )
62
- tokenized_inputs = tokenizer(prompt, return_tensors="pt")
63
- input_ids = tokenized_inputs["input_ids"].to(device)
64
- generation_config = GenerationConfig(
65
- temperature=temperature,
66
- top_p=top_p,
67
- **kwargs,
68
- )
69
- with torch.inference_mode():
70
- generation_output = model.generate(
71
- input_ids=input_ids,
72
- generation_config=generation_config,
73
- return_dict_in_generate=True,
74
- output_scores=True,
75
- max_new_tokens=max_new_tokens,
76
- )
77
- s = generation_output.sequences[0]
78
- output = tokenizer.decode(s)
79
- return output.split("### Réponse:")[1].strip()
80
 
81
- # instruct
82
- instruct("Expliquer le théorème central limite.")
83
- # Le théorème central limite stipule que la loi de la moyenne des valeurs aléatoires d'une série de variables aléatoires est la loi normale.
84
- # Cela signifie que la moyenne des valeurs aléatoires d'une série de variables aléatoires tend vers la loi normale, indépendamment de la taille de la série.
85
 
86
- # instruct + input
87
- instruct(
88
- "Traduisez le texte suivant en français.",
89
- input="Caterpillars extract nutrients which are then converted into butterflies. People have extracted billions of nuggets of understanding and GPT-4 is humanity's butterfly.",
90
- )
91
- # Les papillons de nuit extraient des nutriments qui sont ensuite convertis en papillons. Les gens ont extrait des milliards de nuggets de compréhension et GPT-4 est la butterfly de l'humanité.
92
- ```
93
 
 
94
 
95
- ## Todo
96
  - Add output examples
97
- - Open source github repo
 
1
  ---
2
+ license: openrail
3
+ language:
4
+ - fr
5
+ pipeline_tag: text-generation
6
+ library_name: transformers
7
+ tags:
8
+ - alpaca
9
+ - llama
10
+ - LLM
11
+ datasets:
12
+ - tatsu-lab/alpaca
13
+ inference: false
14
  ---
15
 
16
+ <p align="center" width="100%">
17
+ <img src="vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;">
18
+ </p>
19
 
20
+ # Vigogne-LoRA-7b: A French Instruct LLaMA Model
21
 
22
+ Vigogne-LoRA-7b is a [LLaMA-7B](https://huggingface.co/decapoda-research/llama-7b-hf) model fine-tuned on the translated [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset to follow the French 🇫🇷 instructions.
23
 
24
+ For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne
25
+
26
+ **Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
27
 
28
  ## Usage
29
 
30
+ This repo contains only its low-rank adapter. In order to use it, you also need to load the base LLM model and tokenizer.
31
+
32
  ```python
 
33
  from peft import PeftModel
34
+ from transformers import LlamaForCausalLM, LlamaTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
37
  model = LlamaForCausalLM.from_pretrained(
38
  "decapoda-research/llama-7b-hf",
39
  load_in_8bit=True,
 
40
  device_map="auto",
41
  )
42
+ model = PeftModel.from_pretrained(model, "bofenghuang/vigogne-lora-7b")
43
+ ```
 
 
 
44
 
45
+ You can infer with this model using the following Google Colab Notebook.
46
 
47
+ <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/infer.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ ## Limitations
 
 
 
50
 
51
+ Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
 
 
 
 
 
 
52
 
53
+ ## Next Steps
54
 
 
55
  - Add output examples
 
vigogne_logo.png ADDED