bofenghuang
commited on
Commit
·
d9171c5
1
Parent(s):
4bd59ac
Update readme
Browse files
README.md
CHANGED
@@ -22,15 +22,48 @@ For more information, please visit the Github repo: https://github.com/bofenghua
|
|
22 |
|
23 |
**Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
|
24 |
|
25 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
|
29 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
```
|
32 |
|
33 |
-
You can infer this model by using the following Google Colab Notebook.
|
34 |
|
35 |
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
36 |
|
|
|
22 |
|
23 |
**Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
|
24 |
|
25 |
+
## Changelog
|
26 |
+
|
27 |
+
All versions are available in branches.
|
28 |
+
|
29 |
+
- v1.0: Initial release, trained on the translated Stanford Alpaca dataset.
|
30 |
+
- v1.1: Improved translation quality of the Stanford Alpaca dataset.
|
31 |
+
- v2.0: Expanded training dataset to 224k for better performance.
|
32 |
+
- v3.0: Further expanded training dataset to 262k for improved results.
|
33 |
|
34 |
+
## Usage
|
35 |
|
36 |
```python
|
37 |
+
import torch
|
38 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
39 |
+
from vigogne.preprocess import generate_instruct_prompt
|
40 |
+
|
41 |
+
model_name_or_path = "bofenghuang/vigogne-7b-instruct"
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto")
|
44 |
+
|
45 |
+
user_query = "Expliquez la différence entre DoS et phishing."
|
46 |
+
prompt = generate_instruct_prompt(user_query)
|
47 |
+
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(model.device)
|
48 |
+
input_length = input_ids.shape[1]
|
49 |
|
50 |
+
generated_outputs = model.generate(
|
51 |
+
input_ids=input_ids,
|
52 |
+
generation_config=GenerationConfig(
|
53 |
+
temperature=0.1,
|
54 |
+
do_sample=True,
|
55 |
+
repetition_penalty=1.0,
|
56 |
+
#no_repeat_ngram_size=no_repeat_ngram_size,
|
57 |
+
max_new_tokens=512,
|
58 |
+
),
|
59 |
+
return_dict_in_generate=True,
|
60 |
+
)
|
61 |
+
generated_tokens = generated_outputs.sequences[0, input_length:]
|
62 |
+
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
63 |
+
print(generated_text)
|
64 |
```
|
65 |
|
66 |
+
You can also infer this model by using the following Google Colab Notebook.
|
67 |
|
68 |
<a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
|
69 |
|