bofenghuang commited on
Commit
64b60b2
1 Parent(s): c920ab5

Update README.md

Browse files
README.md CHANGED
@@ -1,5 +1,452 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
5
- *To be done.*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language: fr
4
+ library_name: transformers
5
+ pipeline_tag: automatic-speech-recognition
6
+ thumbnail: null
7
+ tags:
8
+ - automatic-speech-recognition
9
+ - hf-asr-leaderboard
10
+ datasets:
11
+ - mozilla-foundation/common_voice_13_0
12
+ - facebook/multilingual_librispeech
13
+ - facebook/voxpopuli
14
+ - google/fleurs
15
+ - gigant/african_accented_french
16
+ metrics:
17
+ - wer
18
+ model-index:
19
+ - name: whisper-large-v3-french
20
+ results:
21
+ - task:
22
+ name: Automatic Speech Recognition
23
+ type: automatic-speech-recognition
24
+ dataset:
25
+ name: Common Voice 13.0
26
+ type: mozilla-foundation/common_voice_13_0
27
+ config: fr
28
+ split: test
29
+ args:
30
+ language: fr
31
+ metrics:
32
+ - name: WER
33
+ type: wer
34
+ value: 7.28
35
+ - task:
36
+ name: Automatic Speech Recognition
37
+ type: automatic-speech-recognition
38
+ dataset:
39
+ name: Multilingual LibriSpeech (MLS)
40
+ type: facebook/multilingual_librispeech
41
+ config: french
42
+ split: test
43
+ args:
44
+ language: fr
45
+ metrics:
46
+ - name: WER
47
+ type: wer
48
+ value: 3.98
49
+ - task:
50
+ name: Automatic Speech Recognition
51
+ type: automatic-speech-recognition
52
+ dataset:
53
+ name: VoxPopuli
54
+ type: facebook/voxpopuli
55
+ config: fr
56
+ split: test
57
+ args:
58
+ language: fr
59
+ metrics:
60
+ - name: WER
61
+ type: wer
62
+ value: 8.91
63
+ - task:
64
+ name: Automatic Speech Recognition
65
+ type: automatic-speech-recognition
66
+ dataset:
67
+ name: Fleurs
68
+ type: google/fleurs
69
+ config: fr_fr
70
+ split: test
71
+ args:
72
+ language: fr
73
+ metrics:
74
+ - name: WER
75
+ type: wer
76
+ value: 4.84
77
+ - task:
78
+ name: Automatic Speech Recognition
79
+ type: automatic-speech-recognition
80
+ dataset:
81
+ name: African Accented French
82
+ type: gigant/african_accented_french
83
+ config: fr
84
+ split: test
85
+ args:
86
+ language: fr
87
+ metrics:
88
+ - name: WER
89
+ type: wer
90
+ value: 4.20
91
  ---
92
 
93
+ # Whisper-Large-V3-French
94
+
95
+ Whisper-Large-V3-French is fine-tuned on `openai/whisper-large-v3` to further enhance its performance on the French language. This model has been trained to predict casing, punctuation, and numbers. While this might slightly sacrifice performance, we believe it allows for broader usage.
96
+
97
+ This model has been converted into various formats, facilitating its usage across different libraries, including transformers, openai-whisper, fasterwhisper, whisper.cpp, candle, mlx, etc.
98
+
99
+ ## Table of Contents
100
+
101
+ - [Performance](#performance)
102
+ - [Usage](#usage)
103
+ - [Hugging Face Pipeline](#hugging-face-pipeline)
104
+ - [Hugging Face Low-level APIs](#hugging-face-low-level-apis)
105
+ - [Speculative Decoding](#speculative-decoding)
106
+ - [OpenAI Whisper](#openai-whisper)
107
+ - [Faster Whisper](#faster-whisper)
108
+ - [Whisper.cpp](#whispercpp)
109
+ - [Candle](#candle)
110
+ - [MLX](#mlx)
111
+ - [Training details](#training-details)
112
+ - [Acknowledgements](#acknowledgements)
113
+
114
+ ## Performance
115
+
116
+ We evaluated our model on both short and long-form transcriptions, and also tested it on both in-distribution and out-of-distribution datasets to conduct a comprehensive analysis assessing its accuracy, generalizability, and robustness.
117
+
118
+ Please note that the reported WER is the result after converting numbers to text, removing punctuation (except for apostrophes and hyphens), and converting all characters to lowercase.
119
+
120
+ All evaluation results on the public datasets can be found [here](https://drive.google.com/drive/folders/1rFIh6yXRVa9RZ0ieZoKiThFZgQ4STPPI?usp=drive_link).
121
+
122
+ Due to the lack of readily available out-of-domain (OOD) and long-form test sets in French, we evaluated using internal test sets from [Zaion Lab](https://zaion.ai/). These sets comprise human-annotated audio-transcription pairs from call center conversations, which are notable for their significant background noise and domain-specific terminology. If you come across any public datasets suitable for our purposes, please let us know.
123
+
124
+ ### Short-Form Transcription
125
+
126
+ ![eval-short-form](https://huggingface.co/bofenghuang/whisper-large-v3-french/resolve/main/assets/whisper_fr_eval_short_form.png)
127
+
128
+ ### Long-Form Transcription
129
+
130
+ ![eval-long-form](https://huggingface.co/bofenghuang/whisper-large-v3-french/resolve/main/assets/whisper_fr_eval_long_form.png)
131
+
132
+ The long-form transcription was run using the 🤗 Hugging Face pipeline for quicker evaluation. Audio files were segmented into 30-second chunks and processed in parallel.
133
+
134
+ ## Usage
135
+
136
+ ### Hugging Face Pipeline
137
+
138
+ The model can easily used with the 🤗 Hugging Face [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) class for audio transcription.
139
+
140
+ For long-form transcription (> 30 seconds), you can activate the process by passing the `chunk_length_s` argument. This approach segments the audio into smaller segments, processes them in parallel, and then joins them at the strides by identifying the longest common sequence. While this chunked long-form approach may have a slight compromise in performance compared to OpenAI's sequential algorithm, it provides 9x faster inference speed.
141
+
142
+ ```python
143
+ import torch
144
+ from datasets import load_dataset
145
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
146
+
147
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
148
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
149
+
150
+ # Load model
151
+ model_name_or_path = "bofenghuang/whisper-large-v3-french"
152
+ processor = AutoProcessor.from_pretrained(model_name_or_path)
153
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
154
+ model_name_or_path,
155
+ torch_dtype=torch_dtype,
156
+ low_cpu_mem_usage=True,
157
+ )
158
+ model.to(device)
159
+
160
+ # Init pipeline
161
+ pipe = pipeline(
162
+ "automatic-speech-recognition",
163
+ model=model,
164
+ feature_extractor=processor.feature_extractor,
165
+ tokenizer=processor.tokenizer,
166
+ torch_dtype=torch_dtype,
167
+ device=device,
168
+ # chunk_length_s=30, # for long-form transcription
169
+ max_new_tokens=128,
170
+ )
171
+
172
+ # Example audio
173
+ dataset = load_dataset("bofenghuang/asr-dummy", "fr", split="test")
174
+ sample = dataset[0]["audio"]
175
+
176
+ # Run pipeline
177
+ result = pipe(sample)
178
+ print(result["text"])
179
+ ```
180
+
181
+ ### Hugging Face Low-level APIs
182
+
183
+ You can also use the 🤗 Hugging Face low-level APIs for transcription, offering greater control over the process, as demonstrated below:
184
+
185
+ ```python
186
+ import torch
187
+ from datasets import load_dataset
188
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
189
+
190
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
191
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
192
+
193
+ # Load model
194
+ model_name_or_path = "bofenghuang/whisper-large-v3-french"
195
+ processor = AutoProcessor.from_pretrained(model_name_or_path)
196
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
197
+ model_name_or_path,
198
+ torch_dtype=torch_dtype,
199
+ low_cpu_mem_usage=True,
200
+ )
201
+ model.to(device)
202
+
203
+ # Example audio
204
+ dataset = load_dataset("bofenghuang/asr-dummy", "fr", split="test", streaming=True)
205
+ sample = next(iter(dataset))["audio"]
206
+
207
+ # Extract feautres
208
+ input_features = processor(
209
+ sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt"
210
+ ).input_features
211
+
212
+
213
+ # Generate tokens
214
+ predicted_ids = model.generate(
215
+ input_features.to(dtype=torch_dtype).to(device), max_new_tokens=128
216
+ )
217
+
218
+ # Detokenize to text
219
+ transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
220
+ print(transcription)
221
+ ```
222
+
223
+ ### Speculative Decoding
224
+
225
+ [Speculative decoding](https://huggingface.co/blog/whisper-speculative-decoding) can be facilitated by using a draft model, essentially a distilled version of Whisper. This approach guarantees identical outputs to using the main Whisper model alone, offers a 2x faster inference speed, and incurs only a slight increase in memory overhead. Notably, since the distilled version shares the same encoder as the original, only the decoder of the distilled model needs to be loaded, with encoder outputs shared during inference. This can be easily done using the Hugging Face pipeline by specifying the `assistant_model` within the generation configurations.
226
+
227
+ ```python
228
+ import torch
229
+ from datasets import load_dataset
230
+ from transformers import (
231
+ AutoModelForCausalLM,
232
+ AutoModelForSpeechSeq2Seq,
233
+ AutoProcessor,
234
+ pipeline,
235
+ )
236
+
237
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
238
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
239
+
240
+ # Load model
241
+ model_name_or_path = "bofenghuang/whisper-large-v3-french"
242
+ processor = AutoProcessor.from_pretrained(model_name_or_path)
243
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
244
+ model_name_or_path,
245
+ torch_dtype=torch_dtype,
246
+ low_cpu_mem_usage=True,
247
+ )
248
+ model.to(device)
249
+
250
+ # Load draft model
251
+ assistant_model_name_or_path = "bofenghuang/whisper-large-v3-french-distil-dec2"
252
+ assistant_model = AutoModelForCausalLM.from_pretrained(
253
+ assistant_model_name_or_path,
254
+ torch_dtype=torch_dtype,
255
+ low_cpu_mem_usage=True,
256
+ )
257
+ assistant_model.to(device)
258
+
259
+ # Init pipeline
260
+ pipe = pipeline(
261
+ "automatic-speech-recognition",
262
+ model=model,
263
+ feature_extractor=processor.feature_extractor,
264
+ tokenizer=processor.tokenizer,
265
+ torch_dtype=torch_dtype,
266
+ device=device,
267
+ generate_kwargs={"assistant_model": assistant_model},
268
+ max_new_tokens=128,
269
+ )
270
+
271
+ # Example audio
272
+ dataset = load_dataset("bofenghuang/asr-dummy", "fr", split="test")
273
+ sample = dataset[0]["audio"]
274
+
275
+ # Run pipeline
276
+ result = pipe(sample)
277
+ print(result["text"])
278
+ ```
279
+
280
+ ### OpenAI Whisper
281
+
282
+ You can also employ the sequential long-form decoding algorithm with a sliding window and temperature fallback, as outlined by OpenAI in their original [paper](https://arxiv.org/abs/2212.04356).
283
+
284
+ First, install the [openai-whisper](https://github.com/openai/whisper) package:
285
+
286
+ ```bash
287
+ pip install -U openai-whisper
288
+ ```
289
+
290
+ Then, download the converted model:
291
+
292
+ ```bash
293
+ python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='bofenghuang/whisper-large-v3-french', filename='original_model.pt', local_dir='./models/whisper-large-v3-french')"
294
+ ```
295
+
296
+ Now, you can transcirbe audio files by following the usage instructions provided in the repository:
297
+
298
+ ```python
299
+ import whisper
300
+ from datasets import load_dataset
301
+
302
+ # Load model
303
+ model = whisper.load_model("./models/whisper-large-v3-french/original_model.pt")
304
+
305
+ # Example audio
306
+ dataset = load_dataset("bofenghuang/asr-dummy", "fr", split="test")
307
+ sample = dataset[0]["audio"]["array"].astype("float32")
308
+
309
+ # Transcribe
310
+ result = model.transcribe(sample, language="fr")
311
+ print(result["text"])
312
+ ```
313
+
314
+ ### Faster Whisper
315
+
316
+ Faster Whisper is a reimplementation of OpenAI's Whisper models and the sequential long-form decoding algorithm in the [CTranslate2](https://github.com/OpenNMT/CTranslate2) format.
317
+
318
+ Compared to openai-whisper, it offers up to 4x faster inference speed, while consuming less memory. Additionally, the model can be quantized into int8, further enhancing its efficiency on both CPU and GPU.
319
+
320
+ First, install the [faster-whisper](https://github.com/SYSTRAN/faster-whisper) package:
321
+
322
+ ```bash
323
+ pip install faster-whisper
324
+ ```
325
+
326
+ Then, download the model converted to the CTranslate2 format:
327
+
328
+ ```bash
329
+ python -c "from huggingface_hub import snapshot_download; snapshot_download(repo_id='bofenghuang/whisper-large-v3-french', local_dir='./models/whisper-large-v3-french', allow_patterns='ctranslate2/*')"
330
+ ```
331
+
332
+ Now, you can transcirbe audio files by following the usage instructions provided in the repository:
333
+
334
+ ```python
335
+ from datasets import load_dataset
336
+ from faster_whisper import WhisperModel
337
+
338
+ # Load model
339
+ model = WhisperModel("./models/whisper-large-v3-french/ctranslate2", device="cuda", compute_type="float16") # Run on GPU with FP16
340
+
341
+ # Example audio
342
+ dataset = load_dataset("bofenghuang/asr-dummy", "fr", split="test")
343
+ sample = dataset[0]["audio"]["array"].astype("float32")
344
+
345
+ segments, info = model.transcribe(sample, beam_size=5, language="fr")
346
+
347
+ for segment in segments:
348
+ print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
349
+ ```
350
+
351
+ ### Whisper.cpp
352
+
353
+ Whisper.cpp is a reimplementation of OpenAI's Whisper models, crafted in plain C/C++ without any dependencies. It offers compatibility with various backends and platforms.
354
+
355
+ Additionally, the model can be quantized to either 4-bit or 5-bit integers, further enhancing its efficiency.
356
+
357
+ First, clone and build the [whisper.cpp](https://github.com/ggerganov/whisper.cpp) repository:
358
+
359
+ ```bash
360
+ git clone https://github.com/ggerganov/whisper.cpp.git
361
+ cd whisper.cpp
362
+
363
+ # build the main example
364
+ make
365
+ ```
366
+
367
+ Next, download the converted ggml weights from the Hugging Face Hub:
368
+
369
+ ```bash
370
+ # Download model quantized with Q5_0 method
371
+ python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='bofenghuang/whisper-large-v3-french', filename='ggml-model-q5_0.bin', local_dir='./models/whisper-large-v3-french')"
372
+ ```
373
+
374
+ Now, you can transcribe an audio file using the following command:
375
+
376
+ ```bash
377
+ ./main -m ./models/whisper-large-v3-french/ggml-model-q5_0.bin -l fr -f /path/to/audio/file --print-colors
378
+ ```
379
+
380
+ ### Candle
381
+
382
+ [Candle-whisper](https://github.com/huggingface/candle/tree/main/candle-examples/examples/whisper) is a reimplementation of OpenAI's Whisper models in the candle format - a lightweight ML framework built in Rust.
383
+
384
+ First, clone the [candle](https://github.com/huggingface/candle) repository:
385
+
386
+ ```bash
387
+ git clone https://github.com/huggingface/candle.git
388
+ cd candle/candle-examples/examples/whisper
389
+ ```
390
+
391
+ Transcribe an audio file using the following command:
392
+
393
+ ```bash
394
+ cargo run --example whisper --release -- --model large-v3 --model-id bofenghuang/whisper-large-v3-french --language fr --input /path/to/audio/file
395
+ ```
396
+
397
+ In order to use CUDA add `--features cuda` to the example command line:
398
+
399
+ ```bash
400
+ cargo run --example whisper --release --features cuda -- --model large-v3 --model-id bofenghuang/whisper-large-v3-french --language fr --input /path/to/audio/file
401
+ ```
402
+
403
+ ### MLX
404
+
405
+ [MLX-Whisper](https://github.com/ml-explore/mlx-examples/tree/main/whisper) is a reimplementation of OpenAI's Whisper models in the [MLX](https://github.com/ml-explore/mlx) format - a ML framework on Apple silicon. It supports features like lazy computation, unified memory management, etc.
406
+
407
+ First, clone the [MLX Examples](https://github.com/ml-explore/mlx-examples) repository:
408
+
409
+ ```bash
410
+ git clone https://github.com/ml-explore/mlx-examples.git
411
+ cd mlx-examples/whisper
412
+ ```
413
+
414
+ Next, install the dependencies:
415
+
416
+ ```bash
417
+ pip install -r requirements.txt
418
+ ```
419
+
420
+ Download the pytorch checkpoint in the original OpenAI format and convert it into MLX format (We haven't included the converted version here since the repository is already heavy and the conversion is very fast):
421
+
422
+ ```bash
423
+ # Download
424
+ python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='bofenghuang/whisper-large-v3-french', filename='original_model.pt', local_dir='./models/whisper-large-v3-french')"
425
+ # Convert into .npz
426
+ python convert.py --torch-name-or-path ./models/whisper-large-v3-french/original_model.pt --mlx-path ./mlx_models/whisper-large-v3-french
427
+ ```
428
+
429
+ Now, you can transcribe audio with:
430
+
431
+ ```python
432
+ import whisper
433
+
434
+ result = whisper.transcribe("/path/to/audio/file", path_or_hf_repo="mlx_models/whisper-large-v3-french", language="fr")
435
+ print(result["text"])
436
+ ```
437
+
438
+ ## Training details
439
+
440
+ We've collected a composite dataset consisting of over 2,500 hours of French speech recognition data, which incldues datasets such as [Common Voice 13.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli), [Fleurs](https://huggingface.co/datasets/google/fleurs), [Multilingual TEDx](https://www.openslr.org/100/), [MediaSpeech](https://www.openslr.org/108/), [African Accented French](https://huggingface.co/datasets/gigant/african_accented_french), etc.
441
+
442
+ Given that some datasets, like MLS, only offer text without case or punctuation, we employed a customized version of 🤗 [Speechbox](https://github.com/huggingface/speechbox) to restore case and punctuation from a limited set of symbols using the [bofenghuang/whisper-large-v2-cv11-french](bofenghuang/whisper-large-v2-cv11-french) model.
443
+
444
+ However, even within these datasets, we observed certain quality issues. These ranged from mismatches between audio and transcription in terms of language or content, poorly segmented utterances, to missing words in scripted speech, etc. We dedicated effort to enhance the dataset quality by removing over 10% of utterances, and observed a substantial reduction of hallucinations in the resulting model.
445
+
446
+ For training, we employed the script available in the 🤗 Transformers repository. The model training took place on the [Jean-Zay supercomputer](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html) at GENCI, and we extend our gratitude to the IDRIS team for their responsive support throughout the project.
447
+
448
+ ## Acknowledgements
449
+
450
+ - OpenAI for creating and open-sourcing the [Whisper model](https://arxiv.org/abs/2212.04356)
451
+ - 🤗 Hugging Face for integrating the Whisper model and providing the training codebase within the [Transformers](https://github.com/huggingface/transformers) repository
452
+ - [Genci](https://genci.fr/) for their generous contribution of GPU hours to this project
assets/whisper_fr_eval_long_form.png ADDED
assets/whisper_fr_eval_short_form.png ADDED