--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - ko - en widget: source_sentence: "대한민국의 수도는?" sentences: - "서울특별시는 한국이 정치,경제,문화 중심 도시이다." - "부산은 대한민국의 제2의 도시이자 최대의 해양 물류 도시이다." - "제주도는 대한민국에서 유명한 관광지이다" - "Seoul is the capital of Korea" - "울산광역시는 대한민국 남동부 해안에 있는 광역시이다" --- # moco-sentencebertV2.0 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. - 이 모델은 [bongsoo/mbertV2.0](https://huggingface.co/bongsoo/mbertV2.0) MLM 모델을
sentencebert로 만든 후,추가적으로 STS Tearch-student 증류 학습 시켜 만든 모델 입니다. - **vocab: 152,537 개**(기존 119,548 vocab 에 32,989 신규 vocab 추가) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence_transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bongsoo/moco-sentencebertV2.0') embeddings = model.encode(sentences) print(embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(embeddings[0].reshape(1,-1), embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` #### 출력(Outputs) ``` [[ 0.16649279 -0.2933038 -0.00391259 ... 0.00720964 0.18175027 -0.21052675] [ 0.10106096 -0.11454111 -0.00378215 ... -0.009032 -0.2111504 -0.15030429]] *cosine_score:0.3352515697479248 ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. - 평균 폴링(mean_pooling) 방식 사용. ([cls 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-cls-token), [max 폴링](https://huggingface.co/sentence-transformers/bert-base-nli-max-tokens)) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bongsoo/moco-sentencebertV2.0') model = AutoModel.from_pretrained('bongsoo/moco-sentencebertV2.0') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) # sklearn 을 이용하여 cosine_scores를 구함 # => 입력값 embeddings 은 (1,768) 처럼 2D 여야 함. from sklearn.metrics.pairwise import paired_cosine_distances, paired_euclidean_distances, paired_manhattan_distances cosine_scores = 1 - (paired_cosine_distances(sentence_embeddings[0].reshape(1,-1), sentence_embeddings[1].reshape(1,-1))) print(f'*cosine_score:{cosine_scores[0]}') ``` #### 출력(Outputs) ``` Sentence embeddings: tensor([[ 0.1665, -0.2933, -0.0039, ..., 0.0072, 0.1818, -0.2105], [ 0.1011, -0.1145, -0.0038, ..., -0.0090, -0.2112, -0.1503]]) *cosine_score:0.3352515697479248 ``` ## Evaluation Results - 성능 측정을 위한 말뭉치는, 아래 한국어 (kor), 영어(en) 평가 말뭉치를 이용함
한국어 : **korsts(1,379쌍문장)** 와 **klue-sts(519쌍문장)**
영어 : [stsb_multi_mt](https://huggingface.co/datasets/stsb_multi_mt)(1,376쌍문장) 와 [glue:stsb](https://huggingface.co/datasets/glue/viewer/stsb/validation) (1,500쌍문장) - 성능 지표는 **cosin.spearman** 측정하여 비교함. - 평가 측정 코드는 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-test.ipynb) 참조 |모델 |korsts|klue-sts|korsts+klue-sts|stsb_multi_mt|glue(stsb) |:--------|------:|--------:|--------------:|------------:|-----------:| |distiluse-base-multilingual-cased-v2|0.747|0.785|0.577|0.807|0.819| |paraphrase-multilingual-mpnet-base-v2|0.820|0.799|0.711|0.868|0.890| |bongsoo/sentencedistilbertV1.2|0.819|0.858|0.630|0.837|0.873| |bongsoo/moco-sentencedistilbertV2.0|0.812|0.847|0.627|0.837|0.877| |bongsoo/moco-sentencebertV2.0|0.824|0.841|0.635|0.843|0.879| For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training(훈련 과정) The model was trained with the parameters: **1. MLM 훈련** - 입력 모델 : bert-base-multilingual-cased - 말뭉치 : 훈련 : bongsoo/moco-corpus-kowiki2022(7.6M) , 평가: bongsoo/bongevalsmall - HyperParameter : LearningRate : 5e-5, epochs: 8, batchsize: 32, max_token_len : 128 - vocab : 152,537개 (기존 119,548 에 32,989 신규 vocab 추가) - 출력 모델 : mbertV2.0 (size: 813MB) - 훈련시간 : 90h/1GPU (24GB/19.6GB use) - loss : 훈련loss: 2.258400, 평가loss: 3.102096, perplexity: 19.78158(bong_eval:1,500) - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/bert/bert-MLM-Trainer-V1.2.ipynb) 참조 **2. STS 훈련** =>bert를 sentencebert로 만듬. - 입력 모델 : mbertV2.0 - 말뭉치 : korsts + kluestsV1.1 + stsb_multi_mt + mteb/sickr-sts (총:33,093) - HyperParameter : LearningRate : 3e-5, epochs: 200, batchsize: 32, max_token_len : 128 - 출력 모델 : sbert-mbertV2.0 (size: 813MB) - 훈련시간 : 9h20m/1GPU (24GB/9.0GB use) - loss(cosin_spearman) : 0.799(말뭉치:korsts(tune_test.tsv)) - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) 참조 **3.증류(distilation) 훈련** - 학생 모델 : sbert-mbertV2.0 - 교사 모델 : paraphrase-multilingual-mpnet-base-v2 - 말뭉치 : en_ko_train.tsv(한국어-영어 사회과학분야 병렬 말뭉치 : 1.1M) - HyperParameter : LearningRate : 5e-5, epochs: 40, batchsize: 128, max_token_len : 128 - 출력 모델 : sbert-mlbertV2.0-distil - 훈련시간 : 17h/1GPU (24GB/18.6GB use) - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sbert-distillaton.ipynb) 참조 **4.STS 훈련** => sentencebert 모델을 sts 훈련시킴 - 입력 모델 : sbert-mlbertV2.0-distil - 말뭉치 : korsts(5,749) + kluestsV1.1(11,668) + stsb_multi_mt(5,749) + mteb/sickr-sts(9,927) + glue stsb(5,749) (총:38,842) - HyperParameter : LearningRate : 3e-5, epochs: 800, batchsize: 64, max_token_len : 128 - 출력 모델 : moco-sentencebertV2.0 - 훈련시간 : 25h/1GPU (24GB/13GB use) - 훈련코드 [여기](https://github.com/kobongsoo/BERT/blob/master/sbert/sentece-bert-sts.ipynb) 참조
모델 제작 과정에 대한 자세한 내용은 [여기](https://github.com/kobongsoo/BERT/tree/master)를 참조 하세요. **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1035 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Config**: ``` { "_name_or_path": "../../data11/model/sbert/sbert-mbertV2.0-distil", "architectures": [ "BertModel" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "position_embedding_type": "absolute", "torch_dtype": "float32", "transformers_version": "4.21.2", "type_vocab_size": 2, "use_cache": true, "vocab_size": 152537 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors bongsoo