--- license: apache-2.0 datasets: - booba-uz/translation-dataset-250k language: - en - uz metrics: - bleu 35 base_model: - facebook/nllb-200-distilled-600M pipeline_tag: translation library_name: transformers --- # model usage: ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = 'booba-uz/english-uzbek-translation_v2' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer.src_lang = "en" tokenizer.tgt_lang = "uz" prefix = "Translate this text from English to uzbek: " # Function to translate text def translate_text(text: str, target_lang: str = 'uz'): text = prefix + text inputs = tokenizer.encode(text, return_tensors="pt", padding=True) translated = model.generate(inputs, num_beams=5, max_length=200, early_stopping=True) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text input_text = "An Azerbaijan Airlines Embraer ERJ-190AR aircraft crashed at Aktau Airport in Kazakhstan while attempting an emergency landing. The plane, registered as 4K-AZ65, was carrying 67 passengers and five crew members at the time. Some media reports suggest that the number of passengers exceeded 100, with over 60 identified as Russian citizens." # Translate the input text to Uzbek output_text = translate_text(input_text) print("Translated text:", output_text) ```