booster-team commited on
Commit
251853b
·
verified ·
1 Parent(s): b029b53

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - autotrain
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: 'search_query: i love autotrain'
12
+ sentences:
13
+ - 'search_query: huggingface auto train'
14
+ - 'search_query: hugging face auto train'
15
+ - 'search_query: i love autotrain'
16
+ pipeline_tag: sentence-similarity
17
+ ---
18
+
19
+ # Model Trained Using AutoTrain
20
+
21
+ - Problem type: Sentence Transformers
22
+
23
+ ## Validation Metrics
24
+ loss: 0.6764523983001709
25
+
26
+ runtime: 40.1143
27
+
28
+ samples_per_second: 49.858
29
+
30
+ steps_per_second: 3.116
31
+
32
+ : 3.0
33
+
34
+ ## Usage
35
+
36
+ ### Direct Usage (Sentence Transformers)
37
+
38
+ First install the Sentence Transformers library:
39
+
40
+ ```bash
41
+ pip install -U sentence-transformers
42
+ ```
43
+
44
+ Then you can load this model and run inference.
45
+ ```python
46
+ from sentence_transformers import SentenceTransformer
47
+
48
+ # Download from the Hugging Face Hub
49
+ model = SentenceTransformer("sentence_transformers_model_id")
50
+ # Run inference
51
+ sentences = [
52
+ 'search_query: autotrain',
53
+ 'search_query: auto train',
54
+ 'search_query: i love autotrain',
55
+ ]
56
+ embeddings = model.encode(sentences)
57
+ print(embeddings.shape)
58
+
59
+ # Get the similarity scores for the embeddings
60
+ similarities = model.similarity(embeddings, embeddings)
61
+ print(similarities.shape)
62
+ ```
checkpoint-3000/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-3000/README.md ADDED
@@ -0,0 +1,541 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:8000
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: As a user, I want to reset my password via email so that I can
16
+ regain access.
17
+ sentences:
18
+ - 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
19
+ are saved and reflected in the user's profile.<br>3. Test the validation of profile
20
+ fields (e.g., email format).
21
+ - 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
22
+ are saved and reflected in the user's profile.<br>3. Test the validation of profile
23
+ fields (e.g., email format).
24
+ - 1. Verify that the password reset email is sent to the user's registered email
25
+ address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
26
+ password reset link to confirm it allows setting a new password.
27
+ - source_sentence: As a user, I want to update my profile information so that my account
28
+ details are current.
29
+ sentences:
30
+ - 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
31
+ page displays previous orders correctly.<br>3. Test the ability to filter orders
32
+ by date or status.
33
+ - 1. Verify that the password reset email is sent to the user's registered email
34
+ address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
35
+ password reset link to confirm it allows setting a new password.
36
+ - 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
37
+ are saved and reflected in the user's profile.<br>3. Test the validation of profile
38
+ fields (e.g., email format).
39
+ - source_sentence: As a customer, I want to receive notifications for order status
40
+ updates so that I stay informed.
41
+ sentences:
42
+ - 1. Check that notifications are sent for order status changes.<br>2. Verify that
43
+ notifications include accurate order details.<br>3. Test the notification settings
44
+ to ensure users can customize their preferences.
45
+ - 1. Verify that the password reset email is sent to the user's registered email
46
+ address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
47
+ password reset link to confirm it allows setting a new password.
48
+ - 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
49
+ page displays previous orders correctly.<br>3. Test the ability to filter orders
50
+ by date or status.
51
+ - source_sentence: As a user, I want to reset my password via email so that I can
52
+ regain access.
53
+ sentences:
54
+ - 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
55
+ page displays previous orders correctly.<br>3. Test the ability to filter orders
56
+ by date or status.
57
+ - 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
58
+ are saved and reflected in the user's profile.<br>3. Test the validation of profile
59
+ fields (e.g., email format).
60
+ - 1. Verify that the password reset email is sent to the user's registered email
61
+ address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
62
+ password reset link to confirm it allows setting a new password.
63
+ - source_sentence: As a user, I want to update my profile information so that my account
64
+ details are current.
65
+ sentences:
66
+ - 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
67
+ are saved and reflected in the user's profile.<br>3. Test the validation of profile
68
+ fields (e.g., email format).
69
+ - 1. Confirm that an admin can access the 'Add New User' form.<br>2. Verify that
70
+ the form allows entering user details and submitting.<br>3. Check that the new
71
+ user is added to the user list after submission.
72
+ - 1. Test the search functionality by entering a product name and verifying that
73
+ the results include the correct product.<br>2. Ensure the search returns results
74
+ quickly.<br>3. Verify that searching for non-existent products returns no results.
75
+ ---
76
+
77
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
78
+
79
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
80
+
81
+ ## Model Details
82
+
83
+ ### Model Description
84
+ - **Model Type:** Sentence Transformer
85
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
86
+ - **Maximum Sequence Length:** 256 tokens
87
+ - **Output Dimensionality:** 384 tokens
88
+ - **Similarity Function:** Cosine Similarity
89
+ <!-- - **Training Dataset:** Unknown -->
90
+ <!-- - **Language:** Unknown -->
91
+ <!-- - **License:** Unknown -->
92
+
93
+ ### Model Sources
94
+
95
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
96
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
97
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
98
+
99
+ ### Full Model Architecture
100
+
101
+ ```
102
+ SentenceTransformer(
103
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
104
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
105
+ (2): Normalize()
106
+ )
107
+ ```
108
+
109
+ ## Usage
110
+
111
+ ### Direct Usage (Sentence Transformers)
112
+
113
+ First install the Sentence Transformers library:
114
+
115
+ ```bash
116
+ pip install -U sentence-transformers
117
+ ```
118
+
119
+ Then you can load this model and run inference.
120
+ ```python
121
+ from sentence_transformers import SentenceTransformer
122
+
123
+ # Download from the 🤗 Hub
124
+ model = SentenceTransformer("sentence_transformers_model_id")
125
+ # Run inference
126
+ sentences = [
127
+ 'As a user, I want to update my profile information so that my account details are current.',
128
+ "1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes are saved and reflected in the user's profile.<br>3. Test the validation of profile fields (e.g., email format).",
129
+ '1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.',
130
+ ]
131
+ embeddings = model.encode(sentences)
132
+ print(embeddings.shape)
133
+ # [3, 384]
134
+
135
+ # Get the similarity scores for the embeddings
136
+ similarities = model.similarity(embeddings, embeddings)
137
+ print(similarities.shape)
138
+ # [3, 3]
139
+ ```
140
+
141
+ <!--
142
+ ### Direct Usage (Transformers)
143
+
144
+ <details><summary>Click to see the direct usage in Transformers</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Downstream Usage (Sentence Transformers)
151
+
152
+ You can finetune this model on your own dataset.
153
+
154
+ <details><summary>Click to expand</summary>
155
+
156
+ </details>
157
+ -->
158
+
159
+ <!--
160
+ ### Out-of-Scope Use
161
+
162
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
163
+ -->
164
+
165
+ <!--
166
+ ## Bias, Risks and Limitations
167
+
168
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
169
+ -->
170
+
171
+ <!--
172
+ ### Recommendations
173
+
174
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
175
+ -->
176
+
177
+ ## Training Details
178
+
179
+ ### Training Dataset
180
+
181
+ #### Unnamed Dataset
182
+
183
+
184
+ * Size: 8,000 training samples
185
+ * Columns: <code>query</code> and <code>answer</code>
186
+ * Approximate statistics based on the first 1000 samples:
187
+ | | query | answer |
188
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
189
+ | type | string | string |
190
+ | details | <ul><li>min: 21 tokens</li><li>mean: 22.0 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 51.98 tokens</li><li>max: 56 tokens</li></ul> |
191
+ * Samples:
192
+ | query | answer |
193
+ |:----------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
194
+ | <code>As a user, I want to search for products by name so that I can find specific items.</code> | <code>1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.</code> |
195
+ | <code>As an admin, I want to add new users to the system so that I can manage user accounts.</code> | <code>1. Confirm that an admin can access the 'Add New User' form.<br>2. Verify that the form allows entering user details and submitting.<br>3. Check that the new user is added to the user list after submission.</code> |
196
+ | <code>As a user, I want to search for products by name so that I can find specific items.</code> | <code>1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.</code> |
197
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
198
+ ```json
199
+ {
200
+ "scale": 20.0,
201
+ "similarity_fct": "cos_sim"
202
+ }
203
+ ```
204
+
205
+ ### Evaluation Dataset
206
+
207
+ #### Unnamed Dataset
208
+
209
+
210
+ * Size: 2,000 evaluation samples
211
+ * Columns: <code>query</code> and <code>answer</code>
212
+ * Approximate statistics based on the first 1000 samples:
213
+ | | query | answer |
214
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
215
+ | type | string | string |
216
+ | details | <ul><li>min: 21 tokens</li><li>mean: 22.0 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 51.54 tokens</li><li>max: 56 tokens</li></ul> |
217
+ * Samples:
218
+ | query | answer |
219
+ |:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
220
+ | <code>As a user, I want to reset my password via email so that I can regain access.</code> | <code>1. Verify that the password reset email is sent to the user's registered email address.<br>2. Ensure the email contains a password reset link.<br>3. Test the password reset link to confirm it allows setting a new password.</code> |
221
+ | <code>As a customer, I want to receive notifications for order status updates so that I stay informed.</code> | <code>1. Check that notifications are sent for order status changes.<br>2. Verify that notifications include accurate order details.<br>3. Test the notification settings to ensure users can customize their preferences.</code> |
222
+ | <code>As a user, I want to view my order history so that I can track my previous purchases.</code> | <code>1. Ensure the user can access the 'Order History' page.<br>2. Verify that the page displays previous orders correctly.<br>3. Test the ability to filter orders by date or status.</code> |
223
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
224
+ ```json
225
+ {
226
+ "scale": 20.0,
227
+ "similarity_fct": "cos_sim"
228
+ }
229
+ ```
230
+
231
+ ### Training Hyperparameters
232
+ #### Non-Default Hyperparameters
233
+
234
+ - `eval_strategy`: epoch
235
+ - `per_device_eval_batch_size`: 16
236
+ - `learning_rate`: 3e-05
237
+ - `warmup_ratio`: 0.1
238
+ - `fp16`: True
239
+ - `load_best_model_at_end`: True
240
+ - `ddp_find_unused_parameters`: False
241
+
242
+ #### All Hyperparameters
243
+ <details><summary>Click to expand</summary>
244
+
245
+ - `overwrite_output_dir`: False
246
+ - `do_predict`: False
247
+ - `eval_strategy`: epoch
248
+ - `prediction_loss_only`: True
249
+ - `per_device_train_batch_size`: 8
250
+ - `per_device_eval_batch_size`: 16
251
+ - `per_gpu_train_batch_size`: None
252
+ - `per_gpu_eval_batch_size`: None
253
+ - `gradient_accumulation_steps`: 1
254
+ - `eval_accumulation_steps`: None
255
+ - `torch_empty_cache_steps`: None
256
+ - `learning_rate`: 3e-05
257
+ - `weight_decay`: 0.0
258
+ - `adam_beta1`: 0.9
259
+ - `adam_beta2`: 0.999
260
+ - `adam_epsilon`: 1e-08
261
+ - `max_grad_norm`: 1.0
262
+ - `num_train_epochs`: 3
263
+ - `max_steps`: -1
264
+ - `lr_scheduler_type`: linear
265
+ - `lr_scheduler_kwargs`: {}
266
+ - `warmup_ratio`: 0.1
267
+ - `warmup_steps`: 0
268
+ - `log_level`: passive
269
+ - `log_level_replica`: warning
270
+ - `log_on_each_node`: True
271
+ - `logging_nan_inf_filter`: True
272
+ - `save_safetensors`: True
273
+ - `save_on_each_node`: False
274
+ - `save_only_model`: False
275
+ - `restore_callback_states_from_checkpoint`: False
276
+ - `no_cuda`: False
277
+ - `use_cpu`: False
278
+ - `use_mps_device`: False
279
+ - `seed`: 42
280
+ - `data_seed`: None
281
+ - `jit_mode_eval`: False
282
+ - `use_ipex`: False
283
+ - `bf16`: False
284
+ - `fp16`: True
285
+ - `fp16_opt_level`: O1
286
+ - `half_precision_backend`: auto
287
+ - `bf16_full_eval`: False
288
+ - `fp16_full_eval`: False
289
+ - `tf32`: None
290
+ - `local_rank`: 0
291
+ - `ddp_backend`: None
292
+ - `tpu_num_cores`: None
293
+ - `tpu_metrics_debug`: False
294
+ - `debug`: []
295
+ - `dataloader_drop_last`: False
296
+ - `dataloader_num_workers`: 0
297
+ - `dataloader_prefetch_factor`: None
298
+ - `past_index`: -1
299
+ - `disable_tqdm`: False
300
+ - `remove_unused_columns`: True
301
+ - `label_names`: None
302
+ - `load_best_model_at_end`: True
303
+ - `ignore_data_skip`: False
304
+ - `fsdp`: []
305
+ - `fsdp_min_num_params`: 0
306
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
307
+ - `fsdp_transformer_layer_cls_to_wrap`: None
308
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
309
+ - `deepspeed`: None
310
+ - `label_smoothing_factor`: 0.0
311
+ - `optim`: adamw_torch
312
+ - `optim_args`: None
313
+ - `adafactor`: False
314
+ - `group_by_length`: False
315
+ - `length_column_name`: length
316
+ - `ddp_find_unused_parameters`: False
317
+ - `ddp_bucket_cap_mb`: None
318
+ - `ddp_broadcast_buffers`: False
319
+ - `dataloader_pin_memory`: True
320
+ - `dataloader_persistent_workers`: False
321
+ - `skip_memory_metrics`: True
322
+ - `use_legacy_prediction_loop`: False
323
+ - `push_to_hub`: False
324
+ - `resume_from_checkpoint`: None
325
+ - `hub_model_id`: None
326
+ - `hub_strategy`: every_save
327
+ - `hub_private_repo`: False
328
+ - `hub_always_push`: False
329
+ - `gradient_checkpointing`: False
330
+ - `gradient_checkpointing_kwargs`: None
331
+ - `include_inputs_for_metrics`: False
332
+ - `eval_do_concat_batches`: True
333
+ - `fp16_backend`: auto
334
+ - `push_to_hub_model_id`: None
335
+ - `push_to_hub_organization`: None
336
+ - `mp_parameters`:
337
+ - `auto_find_batch_size`: False
338
+ - `full_determinism`: False
339
+ - `torchdynamo`: None
340
+ - `ray_scope`: last
341
+ - `ddp_timeout`: 1800
342
+ - `torch_compile`: False
343
+ - `torch_compile_backend`: None
344
+ - `torch_compile_mode`: None
345
+ - `dispatch_batches`: None
346
+ - `split_batches`: None
347
+ - `include_tokens_per_second`: False
348
+ - `include_num_input_tokens_seen`: False
349
+ - `neftune_noise_alpha`: None
350
+ - `optim_target_modules`: None
351
+ - `batch_eval_metrics`: False
352
+ - `eval_on_start`: False
353
+ - `eval_use_gather_object`: False
354
+ - `batch_sampler`: batch_sampler
355
+ - `multi_dataset_batch_sampler`: proportional
356
+
357
+ </details>
358
+
359
+ ### Training Logs
360
+ <details><summary>Click to expand</summary>
361
+
362
+ | Epoch | Step | Training Loss | loss |
363
+ |:-----:|:----:|:-------------:|:------:|
364
+ | 0.025 | 25 | 0.6305 | - |
365
+ | 0.05 | 50 | 0.7491 | - |
366
+ | 0.075 | 75 | 0.6931 | - |
367
+ | 0.1 | 100 | 0.7093 | - |
368
+ | 0.125 | 125 | 0.631 | - |
369
+ | 0.15 | 150 | 0.6127 | - |
370
+ | 0.175 | 175 | 0.5963 | - |
371
+ | 0.2 | 200 | 0.6556 | - |
372
+ | 0.225 | 225 | 0.6831 | - |
373
+ | 0.25 | 250 | 0.6389 | - |
374
+ | 0.275 | 275 | 0.6913 | - |
375
+ | 0.3 | 300 | 0.6447 | - |
376
+ | 0.325 | 325 | 0.6993 | - |
377
+ | 0.35 | 350 | 0.6581 | - |
378
+ | 0.375 | 375 | 0.6695 | - |
379
+ | 0.4 | 400 | 0.7076 | - |
380
+ | 0.425 | 425 | 0.6301 | - |
381
+ | 0.45 | 450 | 0.6121 | - |
382
+ | 0.475 | 475 | 0.6439 | - |
383
+ | 0.5 | 500 | 0.6782 | - |
384
+ | 0.525 | 525 | 0.7025 | - |
385
+ | 0.55 | 550 | 0.7228 | - |
386
+ | 0.575 | 575 | 0.6065 | - |
387
+ | 0.6 | 600 | 0.6496 | - |
388
+ | 0.625 | 625 | 0.6816 | - |
389
+ | 0.65 | 650 | 0.6302 | - |
390
+ | 0.675 | 675 | 0.692 | - |
391
+ | 0.7 | 700 | 0.7533 | - |
392
+ | 0.725 | 725 | 0.6567 | - |
393
+ | 0.75 | 750 | 0.6472 | - |
394
+ | 0.775 | 775 | 0.6461 | - |
395
+ | 0.8 | 800 | 0.661 | - |
396
+ | 0.825 | 825 | 0.6897 | - |
397
+ | 0.85 | 850 | 0.6097 | - |
398
+ | 0.875 | 875 | 0.6284 | - |
399
+ | 0.9 | 900 | 0.5923 | - |
400
+ | 0.925 | 925 | 0.6642 | - |
401
+ | 0.95 | 950 | 0.6531 | - |
402
+ | 0.975 | 975 | 0.6705 | - |
403
+ | 1.0 | 1000 | 0.7137 | 0.6765 |
404
+ | 1.025 | 1025 | 0.6601 | - |
405
+ | 1.05 | 1050 | 0.6739 | - |
406
+ | 1.075 | 1075 | 0.6487 | - |
407
+ | 1.1 | 1100 | 0.6864 | - |
408
+ | 1.125 | 1125 | 0.7744 | - |
409
+ | 1.15 | 1150 | 0.6698 | - |
410
+ | 1.175 | 1175 | 0.6421 | - |
411
+ | 1.2 | 1200 | 0.633 | - |
412
+ | 1.225 | 1225 | 0.678 | - |
413
+ | 1.25 | 1250 | 0.6264 | - |
414
+ | 1.275 | 1275 | 0.721 | - |
415
+ | 1.3 | 1300 | 0.6736 | - |
416
+ | 1.325 | 1325 | 0.5332 | - |
417
+ | 1.35 | 1350 | 0.6576 | - |
418
+ | 1.375 | 1375 | 0.6625 | - |
419
+ | 1.4 | 1400 | 0.7248 | - |
420
+ | 1.425 | 1425 | 0.6188 | - |
421
+ | 1.45 | 1450 | 0.6452 | - |
422
+ | 1.475 | 1475 | 0.7024 | - |
423
+ | 1.5 | 1500 | 0.7005 | - |
424
+ | 1.525 | 1525 | 0.6219 | - |
425
+ | 1.55 | 1550 | 0.6525 | - |
426
+ | 1.575 | 1575 | 0.6718 | - |
427
+ | 1.6 | 1600 | 0.6738 | - |
428
+ | 1.625 | 1625 | 0.6558 | - |
429
+ | 1.65 | 1650 | 0.6236 | - |
430
+ | 1.675 | 1675 | 0.7126 | - |
431
+ | 1.7 | 1700 | 0.6822 | - |
432
+ | 1.725 | 1725 | 0.6324 | - |
433
+ | 1.75 | 1750 | 0.7036 | - |
434
+ | 1.775 | 1775 | 0.6765 | - |
435
+ | 1.8 | 1800 | 0.654 | - |
436
+ | 1.825 | 1825 | 0.6923 | - |
437
+ | 1.85 | 1850 | 0.6976 | - |
438
+ | 1.875 | 1875 | 0.6904 | - |
439
+ | 1.9 | 1900 | 0.6307 | - |
440
+ | 1.925 | 1925 | 0.6437 | - |
441
+ | 1.95 | 1950 | 0.6333 | - |
442
+ | 1.975 | 1975 | 0.6214 | - |
443
+ | 2.0 | 2000 | 0.6424 | 0.6765 |
444
+ | 2.025 | 2025 | 0.7041 | - |
445
+ | 2.05 | 2050 | 0.7112 | - |
446
+ | 2.075 | 2075 | 0.6696 | - |
447
+ | 2.1 | 2100 | 0.6739 | - |
448
+ | 2.125 | 2125 | 0.6315 | - |
449
+ | 2.15 | 2150 | 0.7649 | - |
450
+ | 2.175 | 2175 | 0.7079 | - |
451
+ | 2.2 | 2200 | 0.6549 | - |
452
+ | 2.225 | 2225 | 0.6548 | - |
453
+ | 2.25 | 2250 | 0.6647 | - |
454
+ | 2.275 | 2275 | 0.7568 | - |
455
+ | 2.3 | 2300 | 0.6659 | - |
456
+ | 2.325 | 2325 | 0.604 | - |
457
+ | 2.35 | 2350 | 0.6342 | - |
458
+ | 2.375 | 2375 | 0.6891 | - |
459
+ | 2.4 | 2400 | 0.6856 | - |
460
+ | 2.425 | 2425 | 0.6683 | - |
461
+ | 2.45 | 2450 | 0.678 | - |
462
+ | 2.475 | 2475 | 0.7102 | - |
463
+ | 2.5 | 2500 | 0.6606 | - |
464
+ | 2.525 | 2525 | 0.6634 | - |
465
+ | 2.55 | 2550 | 0.6443 | - |
466
+ | 2.575 | 2575 | 0.6122 | - |
467
+ | 2.6 | 2600 | 0.6926 | - |
468
+ | 2.625 | 2625 | 0.5957 | - |
469
+ | 2.65 | 2650 | 0.6933 | - |
470
+ | 2.675 | 2675 | 0.691 | - |
471
+ | 2.7 | 2700 | 0.7015 | - |
472
+ | 2.725 | 2725 | 0.7057 | - |
473
+ | 2.75 | 2750 | 0.6386 | - |
474
+ | 2.775 | 2775 | 0.6868 | - |
475
+ | 2.8 | 2800 | 0.6992 | - |
476
+ | 2.825 | 2825 | 0.6338 | - |
477
+ | 2.85 | 2850 | 0.6175 | - |
478
+ | 2.875 | 2875 | 0.6125 | - |
479
+ | 2.9 | 2900 | 0.6675 | - |
480
+ | 2.925 | 2925 | 0.6369 | - |
481
+ | 2.95 | 2950 | 0.6468 | - |
482
+ | 2.975 | 2975 | 0.6627 | - |
483
+ | 3.0 | 3000 | 0.6685 | 0.6765 |
484
+
485
+ </details>
486
+
487
+ ### Framework Versions
488
+ - Python: 3.10.14
489
+ - Sentence Transformers: 3.0.1
490
+ - Transformers: 4.44.1
491
+ - PyTorch: 2.3.0
492
+ - Accelerate: 0.33.0
493
+ - Datasets: 2.19.1
494
+ - Tokenizers: 0.19.1
495
+
496
+ ## Citation
497
+
498
+ ### BibTeX
499
+
500
+ #### Sentence Transformers
501
+ ```bibtex
502
+ @inproceedings{reimers-2019-sentence-bert,
503
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
504
+ author = "Reimers, Nils and Gurevych, Iryna",
505
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
506
+ month = "11",
507
+ year = "2019",
508
+ publisher = "Association for Computational Linguistics",
509
+ url = "https://arxiv.org/abs/1908.10084",
510
+ }
511
+ ```
512
+
513
+ #### MultipleNegativesRankingLoss
514
+ ```bibtex
515
+ @misc{henderson2017efficient,
516
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
517
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
518
+ year={2017},
519
+ eprint={1705.00652},
520
+ archivePrefix={arXiv},
521
+ primaryClass={cs.CL}
522
+ }
523
+ ```
524
+
525
+ <!--
526
+ ## Glossary
527
+
528
+ *Clearly define terms in order to be accessible across audiences.*
529
+ -->
530
+
531
+ <!--
532
+ ## Model Card Authors
533
+
534
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
535
+ -->
536
+
537
+ <!--
538
+ ## Model Card Contact
539
+
540
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
541
+ -->
checkpoint-3000/config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
checkpoint-3000/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.1",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
checkpoint-3000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1ff47b03af3a3a2fa508b0c49eb4cf3ec4bfdd9963efd0cb054ede511e81029
3
+ size 90864192
checkpoint-3000/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec71cd11be0835691f1106dde1f7104cd64ed999f51f6ef5234cd6d1211121a
3
+ size 180604922
checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70658d2dce830ec2775cd030a9a347894f70cb32d918a10e8b522855a7a92a4
3
+ size 13990
checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2655ce6913f75602cb91c3bc837ffd6b125a095fbaa4102a582ad9459d0d7d9c
3
+ size 1064
checkpoint-3000/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
checkpoint-3000/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-3000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3000/tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,906 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6764523983001709,
3
+ "best_model_checkpoint": "autotrain-l21an-6mkt7/checkpoint-3000",
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.025,
13
+ "grad_norm": 3.444312810897827,
14
+ "learning_rate": 2.4999999999999998e-06,
15
+ "loss": 0.6305,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "grad_norm": 4.167919635772705,
21
+ "learning_rate": 4.9999999999999996e-06,
22
+ "loss": 0.7491,
23
+ "step": 50
24
+ },
25
+ {
26
+ "epoch": 0.075,
27
+ "grad_norm": 2.0621402263641357,
28
+ "learning_rate": 7.5e-06,
29
+ "loss": 0.6931,
30
+ "step": 75
31
+ },
32
+ {
33
+ "epoch": 0.1,
34
+ "grad_norm": 2.2826991081237793,
35
+ "learning_rate": 9.999999999999999e-06,
36
+ "loss": 0.7093,
37
+ "step": 100
38
+ },
39
+ {
40
+ "epoch": 0.125,
41
+ "grad_norm": 2.8610947132110596,
42
+ "learning_rate": 1.25e-05,
43
+ "loss": 0.631,
44
+ "step": 125
45
+ },
46
+ {
47
+ "epoch": 0.15,
48
+ "grad_norm": 2.2747015953063965,
49
+ "learning_rate": 1.5e-05,
50
+ "loss": 0.6127,
51
+ "step": 150
52
+ },
53
+ {
54
+ "epoch": 0.175,
55
+ "grad_norm": 1.3792694807052612,
56
+ "learning_rate": 1.7500000000000002e-05,
57
+ "loss": 0.5963,
58
+ "step": 175
59
+ },
60
+ {
61
+ "epoch": 0.2,
62
+ "grad_norm": 2.0398032665252686,
63
+ "learning_rate": 1.9999999999999998e-05,
64
+ "loss": 0.6556,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.225,
69
+ "grad_norm": 1.9805101156234741,
70
+ "learning_rate": 2.25e-05,
71
+ "loss": 0.6831,
72
+ "step": 225
73
+ },
74
+ {
75
+ "epoch": 0.25,
76
+ "grad_norm": 1.3323885202407837,
77
+ "learning_rate": 2.5e-05,
78
+ "loss": 0.6389,
79
+ "step": 250
80
+ },
81
+ {
82
+ "epoch": 0.275,
83
+ "grad_norm": 1.6555352210998535,
84
+ "learning_rate": 2.75e-05,
85
+ "loss": 0.6913,
86
+ "step": 275
87
+ },
88
+ {
89
+ "epoch": 0.3,
90
+ "grad_norm": 1.4770078659057617,
91
+ "learning_rate": 3e-05,
92
+ "loss": 0.6447,
93
+ "step": 300
94
+ },
95
+ {
96
+ "epoch": 0.325,
97
+ "grad_norm": 1.9949244260787964,
98
+ "learning_rate": 2.9722222222222223e-05,
99
+ "loss": 0.6993,
100
+ "step": 325
101
+ },
102
+ {
103
+ "epoch": 0.35,
104
+ "grad_norm": 1.2942368984222412,
105
+ "learning_rate": 2.9444444444444445e-05,
106
+ "loss": 0.6581,
107
+ "step": 350
108
+ },
109
+ {
110
+ "epoch": 0.375,
111
+ "grad_norm": 1.8725063800811768,
112
+ "learning_rate": 2.9166666666666666e-05,
113
+ "loss": 0.6695,
114
+ "step": 375
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 1.4848814010620117,
119
+ "learning_rate": 2.8888888888888888e-05,
120
+ "loss": 0.7076,
121
+ "step": 400
122
+ },
123
+ {
124
+ "epoch": 0.425,
125
+ "grad_norm": 1.406736969947815,
126
+ "learning_rate": 2.8611111111111113e-05,
127
+ "loss": 0.6301,
128
+ "step": 425
129
+ },
130
+ {
131
+ "epoch": 0.45,
132
+ "grad_norm": 1.2826756238937378,
133
+ "learning_rate": 2.8333333333333332e-05,
134
+ "loss": 0.6121,
135
+ "step": 450
136
+ },
137
+ {
138
+ "epoch": 0.475,
139
+ "grad_norm": 1.0705897808074951,
140
+ "learning_rate": 2.8055555555555557e-05,
141
+ "loss": 0.6439,
142
+ "step": 475
143
+ },
144
+ {
145
+ "epoch": 0.5,
146
+ "grad_norm": 1.7978061437606812,
147
+ "learning_rate": 2.777777777777778e-05,
148
+ "loss": 0.6782,
149
+ "step": 500
150
+ },
151
+ {
152
+ "epoch": 0.525,
153
+ "grad_norm": 1.2017405033111572,
154
+ "learning_rate": 2.75e-05,
155
+ "loss": 0.7025,
156
+ "step": 525
157
+ },
158
+ {
159
+ "epoch": 0.55,
160
+ "grad_norm": 1.4544589519500732,
161
+ "learning_rate": 2.7222222222222223e-05,
162
+ "loss": 0.7228,
163
+ "step": 550
164
+ },
165
+ {
166
+ "epoch": 0.575,
167
+ "grad_norm": 2.094083070755005,
168
+ "learning_rate": 2.6944444444444445e-05,
169
+ "loss": 0.6065,
170
+ "step": 575
171
+ },
172
+ {
173
+ "epoch": 0.6,
174
+ "grad_norm": 1.4134550094604492,
175
+ "learning_rate": 2.6666666666666667e-05,
176
+ "loss": 0.6496,
177
+ "step": 600
178
+ },
179
+ {
180
+ "epoch": 0.625,
181
+ "grad_norm": 1.1640647649765015,
182
+ "learning_rate": 2.6388888888888892e-05,
183
+ "loss": 0.6816,
184
+ "step": 625
185
+ },
186
+ {
187
+ "epoch": 0.65,
188
+ "grad_norm": 1.7982358932495117,
189
+ "learning_rate": 2.611111111111111e-05,
190
+ "loss": 0.6302,
191
+ "step": 650
192
+ },
193
+ {
194
+ "epoch": 0.675,
195
+ "grad_norm": 1.6336771249771118,
196
+ "learning_rate": 2.5833333333333336e-05,
197
+ "loss": 0.692,
198
+ "step": 675
199
+ },
200
+ {
201
+ "epoch": 0.7,
202
+ "grad_norm": 1.2203083038330078,
203
+ "learning_rate": 2.5555555555555557e-05,
204
+ "loss": 0.7533,
205
+ "step": 700
206
+ },
207
+ {
208
+ "epoch": 0.725,
209
+ "grad_norm": 1.4167596101760864,
210
+ "learning_rate": 2.5277777777777776e-05,
211
+ "loss": 0.6567,
212
+ "step": 725
213
+ },
214
+ {
215
+ "epoch": 0.75,
216
+ "grad_norm": 2.341327667236328,
217
+ "learning_rate": 2.5e-05,
218
+ "loss": 0.6472,
219
+ "step": 750
220
+ },
221
+ {
222
+ "epoch": 0.775,
223
+ "grad_norm": 1.1488889455795288,
224
+ "learning_rate": 2.4722222222222223e-05,
225
+ "loss": 0.6461,
226
+ "step": 775
227
+ },
228
+ {
229
+ "epoch": 0.8,
230
+ "grad_norm": 1.6008880138397217,
231
+ "learning_rate": 2.4444444444444445e-05,
232
+ "loss": 0.661,
233
+ "step": 800
234
+ },
235
+ {
236
+ "epoch": 0.825,
237
+ "grad_norm": 1.6397242546081543,
238
+ "learning_rate": 2.4166666666666667e-05,
239
+ "loss": 0.6897,
240
+ "step": 825
241
+ },
242
+ {
243
+ "epoch": 0.85,
244
+ "grad_norm": 1.567724347114563,
245
+ "learning_rate": 2.388888888888889e-05,
246
+ "loss": 0.6097,
247
+ "step": 850
248
+ },
249
+ {
250
+ "epoch": 0.875,
251
+ "grad_norm": 1.290542483329773,
252
+ "learning_rate": 2.3611111111111114e-05,
253
+ "loss": 0.6284,
254
+ "step": 875
255
+ },
256
+ {
257
+ "epoch": 0.9,
258
+ "grad_norm": 1.4457989931106567,
259
+ "learning_rate": 2.3333333333333336e-05,
260
+ "loss": 0.5923,
261
+ "step": 900
262
+ },
263
+ {
264
+ "epoch": 0.925,
265
+ "grad_norm": 1.1782793998718262,
266
+ "learning_rate": 2.3055555555555554e-05,
267
+ "loss": 0.6642,
268
+ "step": 925
269
+ },
270
+ {
271
+ "epoch": 0.95,
272
+ "grad_norm": 1.2478561401367188,
273
+ "learning_rate": 2.277777777777778e-05,
274
+ "loss": 0.6531,
275
+ "step": 950
276
+ },
277
+ {
278
+ "epoch": 0.975,
279
+ "grad_norm": 1.3522217273712158,
280
+ "learning_rate": 2.25e-05,
281
+ "loss": 0.6705,
282
+ "step": 975
283
+ },
284
+ {
285
+ "epoch": 1.0,
286
+ "grad_norm": 1.4155220985412598,
287
+ "learning_rate": 2.222222222222222e-05,
288
+ "loss": 0.7137,
289
+ "step": 1000
290
+ },
291
+ {
292
+ "epoch": 1.0,
293
+ "eval_loss": 0.6765261292457581,
294
+ "eval_runtime": 37.4092,
295
+ "eval_samples_per_second": 53.463,
296
+ "eval_steps_per_second": 3.341,
297
+ "step": 1000
298
+ },
299
+ {
300
+ "epoch": 1.025,
301
+ "grad_norm": 1.0540518760681152,
302
+ "learning_rate": 2.1944444444444445e-05,
303
+ "loss": 0.6601,
304
+ "step": 1025
305
+ },
306
+ {
307
+ "epoch": 1.05,
308
+ "grad_norm": 1.219468116760254,
309
+ "learning_rate": 2.1666666666666667e-05,
310
+ "loss": 0.6739,
311
+ "step": 1050
312
+ },
313
+ {
314
+ "epoch": 1.075,
315
+ "grad_norm": 1.1928082704544067,
316
+ "learning_rate": 2.138888888888889e-05,
317
+ "loss": 0.6487,
318
+ "step": 1075
319
+ },
320
+ {
321
+ "epoch": 1.1,
322
+ "grad_norm": 1.0191409587860107,
323
+ "learning_rate": 2.111111111111111e-05,
324
+ "loss": 0.6864,
325
+ "step": 1100
326
+ },
327
+ {
328
+ "epoch": 1.125,
329
+ "grad_norm": 1.0731534957885742,
330
+ "learning_rate": 2.0833333333333333e-05,
331
+ "loss": 0.7744,
332
+ "step": 1125
333
+ },
334
+ {
335
+ "epoch": 1.15,
336
+ "grad_norm": 1.1843361854553223,
337
+ "learning_rate": 2.0555555555555558e-05,
338
+ "loss": 0.6698,
339
+ "step": 1150
340
+ },
341
+ {
342
+ "epoch": 1.175,
343
+ "grad_norm": 1.1600492000579834,
344
+ "learning_rate": 2.027777777777778e-05,
345
+ "loss": 0.6421,
346
+ "step": 1175
347
+ },
348
+ {
349
+ "epoch": 1.2,
350
+ "grad_norm": 1.3744503259658813,
351
+ "learning_rate": 1.9999999999999998e-05,
352
+ "loss": 0.633,
353
+ "step": 1200
354
+ },
355
+ {
356
+ "epoch": 1.225,
357
+ "grad_norm": 0.8186588287353516,
358
+ "learning_rate": 1.9722222222222224e-05,
359
+ "loss": 0.678,
360
+ "step": 1225
361
+ },
362
+ {
363
+ "epoch": 1.25,
364
+ "grad_norm": 1.2602007389068604,
365
+ "learning_rate": 1.9444444444444445e-05,
366
+ "loss": 0.6264,
367
+ "step": 1250
368
+ },
369
+ {
370
+ "epoch": 1.275,
371
+ "grad_norm": 1.5430500507354736,
372
+ "learning_rate": 1.9166666666666667e-05,
373
+ "loss": 0.721,
374
+ "step": 1275
375
+ },
376
+ {
377
+ "epoch": 1.3,
378
+ "grad_norm": 1.6438603401184082,
379
+ "learning_rate": 1.888888888888889e-05,
380
+ "loss": 0.6736,
381
+ "step": 1300
382
+ },
383
+ {
384
+ "epoch": 1.325,
385
+ "grad_norm": 1.1491776704788208,
386
+ "learning_rate": 1.861111111111111e-05,
387
+ "loss": 0.5332,
388
+ "step": 1325
389
+ },
390
+ {
391
+ "epoch": 1.35,
392
+ "grad_norm": 1.087183952331543,
393
+ "learning_rate": 1.8333333333333336e-05,
394
+ "loss": 0.6576,
395
+ "step": 1350
396
+ },
397
+ {
398
+ "epoch": 1.375,
399
+ "grad_norm": 1.6351675987243652,
400
+ "learning_rate": 1.8055555555555555e-05,
401
+ "loss": 0.6625,
402
+ "step": 1375
403
+ },
404
+ {
405
+ "epoch": 1.4,
406
+ "grad_norm": 1.5467578172683716,
407
+ "learning_rate": 1.7777777777777777e-05,
408
+ "loss": 0.7248,
409
+ "step": 1400
410
+ },
411
+ {
412
+ "epoch": 1.425,
413
+ "grad_norm": 1.1913565397262573,
414
+ "learning_rate": 1.7500000000000002e-05,
415
+ "loss": 0.6188,
416
+ "step": 1425
417
+ },
418
+ {
419
+ "epoch": 1.45,
420
+ "grad_norm": 1.1346111297607422,
421
+ "learning_rate": 1.7222222222222224e-05,
422
+ "loss": 0.6452,
423
+ "step": 1450
424
+ },
425
+ {
426
+ "epoch": 1.475,
427
+ "grad_norm": 1.3555978536605835,
428
+ "learning_rate": 1.6944444444444442e-05,
429
+ "loss": 0.7024,
430
+ "step": 1475
431
+ },
432
+ {
433
+ "epoch": 1.5,
434
+ "grad_norm": 0.8716872930526733,
435
+ "learning_rate": 1.6666666666666667e-05,
436
+ "loss": 0.7005,
437
+ "step": 1500
438
+ },
439
+ {
440
+ "epoch": 1.525,
441
+ "grad_norm": 0.9957846999168396,
442
+ "learning_rate": 1.638888888888889e-05,
443
+ "loss": 0.6219,
444
+ "step": 1525
445
+ },
446
+ {
447
+ "epoch": 1.55,
448
+ "grad_norm": 2.1997838020324707,
449
+ "learning_rate": 1.6111111111111115e-05,
450
+ "loss": 0.6525,
451
+ "step": 1550
452
+ },
453
+ {
454
+ "epoch": 1.575,
455
+ "grad_norm": 1.3860341310501099,
456
+ "learning_rate": 1.5833333333333333e-05,
457
+ "loss": 0.6718,
458
+ "step": 1575
459
+ },
460
+ {
461
+ "epoch": 1.6,
462
+ "grad_norm": 0.8452956676483154,
463
+ "learning_rate": 1.5555555555555555e-05,
464
+ "loss": 0.6738,
465
+ "step": 1600
466
+ },
467
+ {
468
+ "epoch": 1.625,
469
+ "grad_norm": 0.9731984734535217,
470
+ "learning_rate": 1.527777777777778e-05,
471
+ "loss": 0.6558,
472
+ "step": 1625
473
+ },
474
+ {
475
+ "epoch": 1.65,
476
+ "grad_norm": 1.831750750541687,
477
+ "learning_rate": 1.5e-05,
478
+ "loss": 0.6236,
479
+ "step": 1650
480
+ },
481
+ {
482
+ "epoch": 1.675,
483
+ "grad_norm": 1.6755101680755615,
484
+ "learning_rate": 1.4722222222222222e-05,
485
+ "loss": 0.7126,
486
+ "step": 1675
487
+ },
488
+ {
489
+ "epoch": 1.7,
490
+ "grad_norm": 1.3757505416870117,
491
+ "learning_rate": 1.4444444444444444e-05,
492
+ "loss": 0.6822,
493
+ "step": 1700
494
+ },
495
+ {
496
+ "epoch": 1.725,
497
+ "grad_norm": 1.377435326576233,
498
+ "learning_rate": 1.4166666666666666e-05,
499
+ "loss": 0.6324,
500
+ "step": 1725
501
+ },
502
+ {
503
+ "epoch": 1.75,
504
+ "grad_norm": 1.0001251697540283,
505
+ "learning_rate": 1.388888888888889e-05,
506
+ "loss": 0.7036,
507
+ "step": 1750
508
+ },
509
+ {
510
+ "epoch": 1.775,
511
+ "grad_norm": 1.0013527870178223,
512
+ "learning_rate": 1.3611111111111111e-05,
513
+ "loss": 0.6765,
514
+ "step": 1775
515
+ },
516
+ {
517
+ "epoch": 1.8,
518
+ "grad_norm": 1.0746055841445923,
519
+ "learning_rate": 1.3333333333333333e-05,
520
+ "loss": 0.654,
521
+ "step": 1800
522
+ },
523
+ {
524
+ "epoch": 1.825,
525
+ "grad_norm": 0.6743106842041016,
526
+ "learning_rate": 1.3055555555555555e-05,
527
+ "loss": 0.6923,
528
+ "step": 1825
529
+ },
530
+ {
531
+ "epoch": 1.85,
532
+ "grad_norm": 0.9659077525138855,
533
+ "learning_rate": 1.2777777777777779e-05,
534
+ "loss": 0.6976,
535
+ "step": 1850
536
+ },
537
+ {
538
+ "epoch": 1.875,
539
+ "grad_norm": 0.7309139966964722,
540
+ "learning_rate": 1.25e-05,
541
+ "loss": 0.6904,
542
+ "step": 1875
543
+ },
544
+ {
545
+ "epoch": 1.9,
546
+ "grad_norm": 0.6239315271377563,
547
+ "learning_rate": 1.2222222222222222e-05,
548
+ "loss": 0.6307,
549
+ "step": 1900
550
+ },
551
+ {
552
+ "epoch": 1.925,
553
+ "grad_norm": 1.3958375453948975,
554
+ "learning_rate": 1.1944444444444444e-05,
555
+ "loss": 0.6437,
556
+ "step": 1925
557
+ },
558
+ {
559
+ "epoch": 1.95,
560
+ "grad_norm": 0.7617831230163574,
561
+ "learning_rate": 1.1666666666666668e-05,
562
+ "loss": 0.6333,
563
+ "step": 1950
564
+ },
565
+ {
566
+ "epoch": 1.975,
567
+ "grad_norm": 0.8432300686836243,
568
+ "learning_rate": 1.138888888888889e-05,
569
+ "loss": 0.6214,
570
+ "step": 1975
571
+ },
572
+ {
573
+ "epoch": 2.0,
574
+ "grad_norm": 1.236924409866333,
575
+ "learning_rate": 1.111111111111111e-05,
576
+ "loss": 0.6424,
577
+ "step": 2000
578
+ },
579
+ {
580
+ "epoch": 2.0,
581
+ "eval_loss": 0.6764588952064514,
582
+ "eval_runtime": 38.544,
583
+ "eval_samples_per_second": 51.889,
584
+ "eval_steps_per_second": 3.243,
585
+ "step": 2000
586
+ },
587
+ {
588
+ "epoch": 2.025,
589
+ "grad_norm": 1.2284152507781982,
590
+ "learning_rate": 1.0833333333333334e-05,
591
+ "loss": 0.7041,
592
+ "step": 2025
593
+ },
594
+ {
595
+ "epoch": 2.05,
596
+ "grad_norm": 0.9430116415023804,
597
+ "learning_rate": 1.0555555555555555e-05,
598
+ "loss": 0.7112,
599
+ "step": 2050
600
+ },
601
+ {
602
+ "epoch": 2.075,
603
+ "grad_norm": 0.5471211075782776,
604
+ "learning_rate": 1.0277777777777779e-05,
605
+ "loss": 0.6696,
606
+ "step": 2075
607
+ },
608
+ {
609
+ "epoch": 2.1,
610
+ "grad_norm": 0.9567949771881104,
611
+ "learning_rate": 9.999999999999999e-06,
612
+ "loss": 0.6739,
613
+ "step": 2100
614
+ },
615
+ {
616
+ "epoch": 2.125,
617
+ "grad_norm": 0.633762001991272,
618
+ "learning_rate": 9.722222222222223e-06,
619
+ "loss": 0.6315,
620
+ "step": 2125
621
+ },
622
+ {
623
+ "epoch": 2.15,
624
+ "grad_norm": 1.0539363622665405,
625
+ "learning_rate": 9.444444444444445e-06,
626
+ "loss": 0.7649,
627
+ "step": 2150
628
+ },
629
+ {
630
+ "epoch": 2.175,
631
+ "grad_norm": 0.9735732078552246,
632
+ "learning_rate": 9.166666666666668e-06,
633
+ "loss": 0.7079,
634
+ "step": 2175
635
+ },
636
+ {
637
+ "epoch": 2.2,
638
+ "grad_norm": 1.3620977401733398,
639
+ "learning_rate": 8.888888888888888e-06,
640
+ "loss": 0.6549,
641
+ "step": 2200
642
+ },
643
+ {
644
+ "epoch": 2.225,
645
+ "grad_norm": 0.9268941879272461,
646
+ "learning_rate": 8.611111111111112e-06,
647
+ "loss": 0.6548,
648
+ "step": 2225
649
+ },
650
+ {
651
+ "epoch": 2.25,
652
+ "grad_norm": 0.4519413709640503,
653
+ "learning_rate": 8.333333333333334e-06,
654
+ "loss": 0.6647,
655
+ "step": 2250
656
+ },
657
+ {
658
+ "epoch": 2.275,
659
+ "grad_norm": 0.8613296747207642,
660
+ "learning_rate": 8.055555555555557e-06,
661
+ "loss": 0.7568,
662
+ "step": 2275
663
+ },
664
+ {
665
+ "epoch": 2.3,
666
+ "grad_norm": 1.1156052350997925,
667
+ "learning_rate": 7.777777777777777e-06,
668
+ "loss": 0.6659,
669
+ "step": 2300
670
+ },
671
+ {
672
+ "epoch": 2.325,
673
+ "grad_norm": 0.8070225119590759,
674
+ "learning_rate": 7.5e-06,
675
+ "loss": 0.604,
676
+ "step": 2325
677
+ },
678
+ {
679
+ "epoch": 2.35,
680
+ "grad_norm": 1.2144221067428589,
681
+ "learning_rate": 7.222222222222222e-06,
682
+ "loss": 0.6342,
683
+ "step": 2350
684
+ },
685
+ {
686
+ "epoch": 2.375,
687
+ "grad_norm": 0.8116927742958069,
688
+ "learning_rate": 6.944444444444445e-06,
689
+ "loss": 0.6891,
690
+ "step": 2375
691
+ },
692
+ {
693
+ "epoch": 2.4,
694
+ "grad_norm": 0.8394978642463684,
695
+ "learning_rate": 6.666666666666667e-06,
696
+ "loss": 0.6856,
697
+ "step": 2400
698
+ },
699
+ {
700
+ "epoch": 2.425,
701
+ "grad_norm": 1.1582024097442627,
702
+ "learning_rate": 6.388888888888889e-06,
703
+ "loss": 0.6683,
704
+ "step": 2425
705
+ },
706
+ {
707
+ "epoch": 2.45,
708
+ "grad_norm": 0.9621151089668274,
709
+ "learning_rate": 6.111111111111111e-06,
710
+ "loss": 0.678,
711
+ "step": 2450
712
+ },
713
+ {
714
+ "epoch": 2.475,
715
+ "grad_norm": 1.0509181022644043,
716
+ "learning_rate": 5.833333333333334e-06,
717
+ "loss": 0.7102,
718
+ "step": 2475
719
+ },
720
+ {
721
+ "epoch": 2.5,
722
+ "grad_norm": 0.7675669193267822,
723
+ "learning_rate": 5.555555555555555e-06,
724
+ "loss": 0.6606,
725
+ "step": 2500
726
+ },
727
+ {
728
+ "epoch": 2.525,
729
+ "grad_norm": 0.9356604218482971,
730
+ "learning_rate": 5.277777777777778e-06,
731
+ "loss": 0.6634,
732
+ "step": 2525
733
+ },
734
+ {
735
+ "epoch": 2.55,
736
+ "grad_norm": 1.1379098892211914,
737
+ "learning_rate": 4.9999999999999996e-06,
738
+ "loss": 0.6443,
739
+ "step": 2550
740
+ },
741
+ {
742
+ "epoch": 2.575,
743
+ "grad_norm": 1.0013926029205322,
744
+ "learning_rate": 4.722222222222222e-06,
745
+ "loss": 0.6122,
746
+ "step": 2575
747
+ },
748
+ {
749
+ "epoch": 2.6,
750
+ "grad_norm": 0.771693229675293,
751
+ "learning_rate": 4.444444444444444e-06,
752
+ "loss": 0.6926,
753
+ "step": 2600
754
+ },
755
+ {
756
+ "epoch": 2.625,
757
+ "grad_norm": 0.7376611232757568,
758
+ "learning_rate": 4.166666666666667e-06,
759
+ "loss": 0.5957,
760
+ "step": 2625
761
+ },
762
+ {
763
+ "epoch": 2.65,
764
+ "grad_norm": 0.7340726256370544,
765
+ "learning_rate": 3.888888888888889e-06,
766
+ "loss": 0.6933,
767
+ "step": 2650
768
+ },
769
+ {
770
+ "epoch": 2.675,
771
+ "grad_norm": 0.7760947942733765,
772
+ "learning_rate": 3.611111111111111e-06,
773
+ "loss": 0.691,
774
+ "step": 2675
775
+ },
776
+ {
777
+ "epoch": 2.7,
778
+ "grad_norm": 0.9809922575950623,
779
+ "learning_rate": 3.3333333333333333e-06,
780
+ "loss": 0.7015,
781
+ "step": 2700
782
+ },
783
+ {
784
+ "epoch": 2.725,
785
+ "grad_norm": 0.9861670732498169,
786
+ "learning_rate": 3.0555555555555556e-06,
787
+ "loss": 0.7057,
788
+ "step": 2725
789
+ },
790
+ {
791
+ "epoch": 2.75,
792
+ "grad_norm": 0.8055828809738159,
793
+ "learning_rate": 2.7777777777777775e-06,
794
+ "loss": 0.6386,
795
+ "step": 2750
796
+ },
797
+ {
798
+ "epoch": 2.775,
799
+ "grad_norm": 1.0951838493347168,
800
+ "learning_rate": 2.4999999999999998e-06,
801
+ "loss": 0.6868,
802
+ "step": 2775
803
+ },
804
+ {
805
+ "epoch": 2.8,
806
+ "grad_norm": 1.086242437362671,
807
+ "learning_rate": 2.222222222222222e-06,
808
+ "loss": 0.6992,
809
+ "step": 2800
810
+ },
811
+ {
812
+ "epoch": 2.825,
813
+ "grad_norm": 0.6613348126411438,
814
+ "learning_rate": 1.9444444444444444e-06,
815
+ "loss": 0.6338,
816
+ "step": 2825
817
+ },
818
+ {
819
+ "epoch": 2.85,
820
+ "grad_norm": 0.944501519203186,
821
+ "learning_rate": 1.6666666666666667e-06,
822
+ "loss": 0.6175,
823
+ "step": 2850
824
+ },
825
+ {
826
+ "epoch": 2.875,
827
+ "grad_norm": 0.5407629609107971,
828
+ "learning_rate": 1.3888888888888887e-06,
829
+ "loss": 0.6125,
830
+ "step": 2875
831
+ },
832
+ {
833
+ "epoch": 2.9,
834
+ "grad_norm": 1.0618243217468262,
835
+ "learning_rate": 1.111111111111111e-06,
836
+ "loss": 0.6675,
837
+ "step": 2900
838
+ },
839
+ {
840
+ "epoch": 2.925,
841
+ "grad_norm": 0.6185476183891296,
842
+ "learning_rate": 8.333333333333333e-07,
843
+ "loss": 0.6369,
844
+ "step": 2925
845
+ },
846
+ {
847
+ "epoch": 2.95,
848
+ "grad_norm": 0.9023645520210266,
849
+ "learning_rate": 5.555555555555555e-07,
850
+ "loss": 0.6468,
851
+ "step": 2950
852
+ },
853
+ {
854
+ "epoch": 2.975,
855
+ "grad_norm": 1.4191973209381104,
856
+ "learning_rate": 2.7777777777777776e-07,
857
+ "loss": 0.6627,
858
+ "step": 2975
859
+ },
860
+ {
861
+ "epoch": 3.0,
862
+ "grad_norm": 0.7791981101036072,
863
+ "learning_rate": 0.0,
864
+ "loss": 0.6685,
865
+ "step": 3000
866
+ },
867
+ {
868
+ "epoch": 3.0,
869
+ "eval_loss": 0.6764523983001709,
870
+ "eval_runtime": 38.9354,
871
+ "eval_samples_per_second": 51.367,
872
+ "eval_steps_per_second": 3.21,
873
+ "step": 3000
874
+ }
875
+ ],
876
+ "logging_steps": 25,
877
+ "max_steps": 3000,
878
+ "num_input_tokens_seen": 0,
879
+ "num_train_epochs": 3,
880
+ "save_steps": 500,
881
+ "stateful_callbacks": {
882
+ "EarlyStoppingCallback": {
883
+ "args": {
884
+ "early_stopping_patience": 5,
885
+ "early_stopping_threshold": 0.01
886
+ },
887
+ "attributes": {
888
+ "early_stopping_patience_counter": 0
889
+ }
890
+ },
891
+ "TrainerControl": {
892
+ "args": {
893
+ "should_epoch_stop": false,
894
+ "should_evaluate": false,
895
+ "should_log": false,
896
+ "should_save": true,
897
+ "should_training_stop": true
898
+ },
899
+ "attributes": {}
900
+ }
901
+ },
902
+ "total_flos": 0.0,
903
+ "train_batch_size": 8,
904
+ "trial_name": null,
905
+ "trial_params": null
906
+ }
checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589663a5d5d4c2ad6cadb41f9c6f0fc1833a3eb1b7861c2bbe91f737ce19deb2
3
+ size 5432
checkpoint-3000/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.1",
5
+ "pytorch": "2.3.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1ff47b03af3a3a2fa508b0c49eb4cf3ec4bfdd9963efd0cb054ede511e81029
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724509043.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8747e8ca8b23e57bc4cf33ce87190fdbbd43a40de6ccf2d3003d082ffb8768b7
3
- size 24657
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1958b35b9a85b4ad73968ca3f6903dd3a7abac6fe2551122b59276de851c8307
3
+ size 30768
runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724511395.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:959a880d6430fb04462fc025bd34cdd0f0d9e6298bec70f0bf102dae21c923e4
3
+ size 359
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589663a5d5d4c2ad6cadb41f9c6f0fc1833a3eb1b7861c2bbe91f737ce19deb2
3
+ size 5432
training_params.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "data_path": "autotrain-l21an-6mkt7/autotrain-data",
3
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
4
+ "lr": 3e-05,
5
+ "epochs": 3,
6
+ "max_seq_length": 128,
7
+ "batch_size": 8,
8
+ "warmup_ratio": 0.1,
9
+ "gradient_accumulation": 1,
10
+ "optimizer": "adamw_torch",
11
+ "scheduler": "linear",
12
+ "weight_decay": 0.0,
13
+ "max_grad_norm": 1.0,
14
+ "seed": 42,
15
+ "train_split": "train",
16
+ "valid_split": "validation",
17
+ "logging_steps": -1,
18
+ "project_name": "autotrain-l21an-6mkt7",
19
+ "auto_find_batch_size": false,
20
+ "mixed_precision": "fp16",
21
+ "save_total_limit": 1,
22
+ "push_to_hub": true,
23
+ "eval_strategy": "epoch",
24
+ "username": "booster-team",
25
+ "log": "tensorboard",
26
+ "early_stopping_patience": 5,
27
+ "early_stopping_threshold": 0.01,
28
+ "trainer": "qa",
29
+ "sentence1_column": "autotrain_sentence1",
30
+ "sentence2_column": "autotrain_sentence2",
31
+ "sentence3_column": "autotrain_sentence3",
32
+ "target_column": "autotrain_target"
33
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff