Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +62 -0
- checkpoint-3000/1_Pooling/config.json +10 -0
- checkpoint-3000/README.md +541 -0
- checkpoint-3000/config.json +26 -0
- checkpoint-3000/config_sentence_transformers.json +10 -0
- checkpoint-3000/model.safetensors +3 -0
- checkpoint-3000/modules.json +20 -0
- checkpoint-3000/optimizer.pt +3 -0
- checkpoint-3000/rng_state.pth +3 -0
- checkpoint-3000/scheduler.pt +3 -0
- checkpoint-3000/sentence_bert_config.json +4 -0
- checkpoint-3000/special_tokens_map.json +37 -0
- checkpoint-3000/tokenizer.json +0 -0
- checkpoint-3000/tokenizer_config.json +64 -0
- checkpoint-3000/trainer_state.json +906 -0
- checkpoint-3000/training_args.bin +3 -0
- checkpoint-3000/vocab.txt +0 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724509043.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.0 +2 -2
- runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724511395.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.1 +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- training_args.bin +3 -0
- training_params.json +33 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- autotrain
|
9 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'search_query: i love autotrain'
|
12 |
+
sentences:
|
13 |
+
- 'search_query: huggingface auto train'
|
14 |
+
- 'search_query: hugging face auto train'
|
15 |
+
- 'search_query: i love autotrain'
|
16 |
+
pipeline_tag: sentence-similarity
|
17 |
+
---
|
18 |
+
|
19 |
+
# Model Trained Using AutoTrain
|
20 |
+
|
21 |
+
- Problem type: Sentence Transformers
|
22 |
+
|
23 |
+
## Validation Metrics
|
24 |
+
loss: 0.6764523983001709
|
25 |
+
|
26 |
+
runtime: 40.1143
|
27 |
+
|
28 |
+
samples_per_second: 49.858
|
29 |
+
|
30 |
+
steps_per_second: 3.116
|
31 |
+
|
32 |
+
: 3.0
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
### Direct Usage (Sentence Transformers)
|
37 |
+
|
38 |
+
First install the Sentence Transformers library:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
pip install -U sentence-transformers
|
42 |
+
```
|
43 |
+
|
44 |
+
Then you can load this model and run inference.
|
45 |
+
```python
|
46 |
+
from sentence_transformers import SentenceTransformer
|
47 |
+
|
48 |
+
# Download from the Hugging Face Hub
|
49 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
50 |
+
# Run inference
|
51 |
+
sentences = [
|
52 |
+
'search_query: autotrain',
|
53 |
+
'search_query: auto train',
|
54 |
+
'search_query: i love autotrain',
|
55 |
+
]
|
56 |
+
embeddings = model.encode(sentences)
|
57 |
+
print(embeddings.shape)
|
58 |
+
|
59 |
+
# Get the similarity scores for the embeddings
|
60 |
+
similarities = model.similarity(embeddings, embeddings)
|
61 |
+
print(similarities.shape)
|
62 |
+
```
|
checkpoint-3000/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
checkpoint-3000/README.md
ADDED
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
datasets: []
|
4 |
+
language: []
|
5 |
+
library_name: sentence-transformers
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
tags:
|
8 |
+
- sentence-transformers
|
9 |
+
- sentence-similarity
|
10 |
+
- feature-extraction
|
11 |
+
- generated_from_trainer
|
12 |
+
- dataset_size:8000
|
13 |
+
- loss:MultipleNegativesRankingLoss
|
14 |
+
widget:
|
15 |
+
- source_sentence: As a user, I want to reset my password via email so that I can
|
16 |
+
regain access.
|
17 |
+
sentences:
|
18 |
+
- 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
|
19 |
+
are saved and reflected in the user's profile.<br>3. Test the validation of profile
|
20 |
+
fields (e.g., email format).
|
21 |
+
- 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
|
22 |
+
are saved and reflected in the user's profile.<br>3. Test the validation of profile
|
23 |
+
fields (e.g., email format).
|
24 |
+
- 1. Verify that the password reset email is sent to the user's registered email
|
25 |
+
address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
|
26 |
+
password reset link to confirm it allows setting a new password.
|
27 |
+
- source_sentence: As a user, I want to update my profile information so that my account
|
28 |
+
details are current.
|
29 |
+
sentences:
|
30 |
+
- 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
|
31 |
+
page displays previous orders correctly.<br>3. Test the ability to filter orders
|
32 |
+
by date or status.
|
33 |
+
- 1. Verify that the password reset email is sent to the user's registered email
|
34 |
+
address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
|
35 |
+
password reset link to confirm it allows setting a new password.
|
36 |
+
- 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
|
37 |
+
are saved and reflected in the user's profile.<br>3. Test the validation of profile
|
38 |
+
fields (e.g., email format).
|
39 |
+
- source_sentence: As a customer, I want to receive notifications for order status
|
40 |
+
updates so that I stay informed.
|
41 |
+
sentences:
|
42 |
+
- 1. Check that notifications are sent for order status changes.<br>2. Verify that
|
43 |
+
notifications include accurate order details.<br>3. Test the notification settings
|
44 |
+
to ensure users can customize their preferences.
|
45 |
+
- 1. Verify that the password reset email is sent to the user's registered email
|
46 |
+
address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
|
47 |
+
password reset link to confirm it allows setting a new password.
|
48 |
+
- 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
|
49 |
+
page displays previous orders correctly.<br>3. Test the ability to filter orders
|
50 |
+
by date or status.
|
51 |
+
- source_sentence: As a user, I want to reset my password via email so that I can
|
52 |
+
regain access.
|
53 |
+
sentences:
|
54 |
+
- 1. Ensure the user can access the 'Order History' page.<br>2. Verify that the
|
55 |
+
page displays previous orders correctly.<br>3. Test the ability to filter orders
|
56 |
+
by date or status.
|
57 |
+
- 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
|
58 |
+
are saved and reflected in the user's profile.<br>3. Test the validation of profile
|
59 |
+
fields (e.g., email format).
|
60 |
+
- 1. Verify that the password reset email is sent to the user's registered email
|
61 |
+
address.<br>2. Ensure the email contains a password reset link.<br>3. Test the
|
62 |
+
password reset link to confirm it allows setting a new password.
|
63 |
+
- source_sentence: As a user, I want to update my profile information so that my account
|
64 |
+
details are current.
|
65 |
+
sentences:
|
66 |
+
- 1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes
|
67 |
+
are saved and reflected in the user's profile.<br>3. Test the validation of profile
|
68 |
+
fields (e.g., email format).
|
69 |
+
- 1. Confirm that an admin can access the 'Add New User' form.<br>2. Verify that
|
70 |
+
the form allows entering user details and submitting.<br>3. Check that the new
|
71 |
+
user is added to the user list after submission.
|
72 |
+
- 1. Test the search functionality by entering a product name and verifying that
|
73 |
+
the results include the correct product.<br>2. Ensure the search returns results
|
74 |
+
quickly.<br>3. Verify that searching for non-existent products returns no results.
|
75 |
+
---
|
76 |
+
|
77 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
78 |
+
|
79 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
80 |
+
|
81 |
+
## Model Details
|
82 |
+
|
83 |
+
### Model Description
|
84 |
+
- **Model Type:** Sentence Transformer
|
85 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
|
86 |
+
- **Maximum Sequence Length:** 256 tokens
|
87 |
+
- **Output Dimensionality:** 384 tokens
|
88 |
+
- **Similarity Function:** Cosine Similarity
|
89 |
+
<!-- - **Training Dataset:** Unknown -->
|
90 |
+
<!-- - **Language:** Unknown -->
|
91 |
+
<!-- - **License:** Unknown -->
|
92 |
+
|
93 |
+
### Model Sources
|
94 |
+
|
95 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
96 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
97 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
98 |
+
|
99 |
+
### Full Model Architecture
|
100 |
+
|
101 |
+
```
|
102 |
+
SentenceTransformer(
|
103 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
104 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
105 |
+
(2): Normalize()
|
106 |
+
)
|
107 |
+
```
|
108 |
+
|
109 |
+
## Usage
|
110 |
+
|
111 |
+
### Direct Usage (Sentence Transformers)
|
112 |
+
|
113 |
+
First install the Sentence Transformers library:
|
114 |
+
|
115 |
+
```bash
|
116 |
+
pip install -U sentence-transformers
|
117 |
+
```
|
118 |
+
|
119 |
+
Then you can load this model and run inference.
|
120 |
+
```python
|
121 |
+
from sentence_transformers import SentenceTransformer
|
122 |
+
|
123 |
+
# Download from the 🤗 Hub
|
124 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
125 |
+
# Run inference
|
126 |
+
sentences = [
|
127 |
+
'As a user, I want to update my profile information so that my account details are current.',
|
128 |
+
"1. Ensure the user can access the 'Update Profile' form.<br>2. Verify that changes are saved and reflected in the user's profile.<br>3. Test the validation of profile fields (e.g., email format).",
|
129 |
+
'1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.',
|
130 |
+
]
|
131 |
+
embeddings = model.encode(sentences)
|
132 |
+
print(embeddings.shape)
|
133 |
+
# [3, 384]
|
134 |
+
|
135 |
+
# Get the similarity scores for the embeddings
|
136 |
+
similarities = model.similarity(embeddings, embeddings)
|
137 |
+
print(similarities.shape)
|
138 |
+
# [3, 3]
|
139 |
+
```
|
140 |
+
|
141 |
+
<!--
|
142 |
+
### Direct Usage (Transformers)
|
143 |
+
|
144 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
145 |
+
|
146 |
+
</details>
|
147 |
+
-->
|
148 |
+
|
149 |
+
<!--
|
150 |
+
### Downstream Usage (Sentence Transformers)
|
151 |
+
|
152 |
+
You can finetune this model on your own dataset.
|
153 |
+
|
154 |
+
<details><summary>Click to expand</summary>
|
155 |
+
|
156 |
+
</details>
|
157 |
+
-->
|
158 |
+
|
159 |
+
<!--
|
160 |
+
### Out-of-Scope Use
|
161 |
+
|
162 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
163 |
+
-->
|
164 |
+
|
165 |
+
<!--
|
166 |
+
## Bias, Risks and Limitations
|
167 |
+
|
168 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Recommendations
|
173 |
+
|
174 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
175 |
+
-->
|
176 |
+
|
177 |
+
## Training Details
|
178 |
+
|
179 |
+
### Training Dataset
|
180 |
+
|
181 |
+
#### Unnamed Dataset
|
182 |
+
|
183 |
+
|
184 |
+
* Size: 8,000 training samples
|
185 |
+
* Columns: <code>query</code> and <code>answer</code>
|
186 |
+
* Approximate statistics based on the first 1000 samples:
|
187 |
+
| | query | answer |
|
188 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
189 |
+
| type | string | string |
|
190 |
+
| details | <ul><li>min: 21 tokens</li><li>mean: 22.0 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 51.98 tokens</li><li>max: 56 tokens</li></ul> |
|
191 |
+
* Samples:
|
192 |
+
| query | answer |
|
193 |
+
|:----------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
194 |
+
| <code>As a user, I want to search for products by name so that I can find specific items.</code> | <code>1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.</code> |
|
195 |
+
| <code>As an admin, I want to add new users to the system so that I can manage user accounts.</code> | <code>1. Confirm that an admin can access the 'Add New User' form.<br>2. Verify that the form allows entering user details and submitting.<br>3. Check that the new user is added to the user list after submission.</code> |
|
196 |
+
| <code>As a user, I want to search for products by name so that I can find specific items.</code> | <code>1. Test the search functionality by entering a product name and verifying that the results include the correct product.<br>2. Ensure the search returns results quickly.<br>3. Verify that searching for non-existent products returns no results.</code> |
|
197 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
198 |
+
```json
|
199 |
+
{
|
200 |
+
"scale": 20.0,
|
201 |
+
"similarity_fct": "cos_sim"
|
202 |
+
}
|
203 |
+
```
|
204 |
+
|
205 |
+
### Evaluation Dataset
|
206 |
+
|
207 |
+
#### Unnamed Dataset
|
208 |
+
|
209 |
+
|
210 |
+
* Size: 2,000 evaluation samples
|
211 |
+
* Columns: <code>query</code> and <code>answer</code>
|
212 |
+
* Approximate statistics based on the first 1000 samples:
|
213 |
+
| | query | answer |
|
214 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
215 |
+
| type | string | string |
|
216 |
+
| details | <ul><li>min: 21 tokens</li><li>mean: 22.0 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 46 tokens</li><li>mean: 51.54 tokens</li><li>max: 56 tokens</li></ul> |
|
217 |
+
* Samples:
|
218 |
+
| query | answer |
|
219 |
+
|:--------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
220 |
+
| <code>As a user, I want to reset my password via email so that I can regain access.</code> | <code>1. Verify that the password reset email is sent to the user's registered email address.<br>2. Ensure the email contains a password reset link.<br>3. Test the password reset link to confirm it allows setting a new password.</code> |
|
221 |
+
| <code>As a customer, I want to receive notifications for order status updates so that I stay informed.</code> | <code>1. Check that notifications are sent for order status changes.<br>2. Verify that notifications include accurate order details.<br>3. Test the notification settings to ensure users can customize their preferences.</code> |
|
222 |
+
| <code>As a user, I want to view my order history so that I can track my previous purchases.</code> | <code>1. Ensure the user can access the 'Order History' page.<br>2. Verify that the page displays previous orders correctly.<br>3. Test the ability to filter orders by date or status.</code> |
|
223 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
224 |
+
```json
|
225 |
+
{
|
226 |
+
"scale": 20.0,
|
227 |
+
"similarity_fct": "cos_sim"
|
228 |
+
}
|
229 |
+
```
|
230 |
+
|
231 |
+
### Training Hyperparameters
|
232 |
+
#### Non-Default Hyperparameters
|
233 |
+
|
234 |
+
- `eval_strategy`: epoch
|
235 |
+
- `per_device_eval_batch_size`: 16
|
236 |
+
- `learning_rate`: 3e-05
|
237 |
+
- `warmup_ratio`: 0.1
|
238 |
+
- `fp16`: True
|
239 |
+
- `load_best_model_at_end`: True
|
240 |
+
- `ddp_find_unused_parameters`: False
|
241 |
+
|
242 |
+
#### All Hyperparameters
|
243 |
+
<details><summary>Click to expand</summary>
|
244 |
+
|
245 |
+
- `overwrite_output_dir`: False
|
246 |
+
- `do_predict`: False
|
247 |
+
- `eval_strategy`: epoch
|
248 |
+
- `prediction_loss_only`: True
|
249 |
+
- `per_device_train_batch_size`: 8
|
250 |
+
- `per_device_eval_batch_size`: 16
|
251 |
+
- `per_gpu_train_batch_size`: None
|
252 |
+
- `per_gpu_eval_batch_size`: None
|
253 |
+
- `gradient_accumulation_steps`: 1
|
254 |
+
- `eval_accumulation_steps`: None
|
255 |
+
- `torch_empty_cache_steps`: None
|
256 |
+
- `learning_rate`: 3e-05
|
257 |
+
- `weight_decay`: 0.0
|
258 |
+
- `adam_beta1`: 0.9
|
259 |
+
- `adam_beta2`: 0.999
|
260 |
+
- `adam_epsilon`: 1e-08
|
261 |
+
- `max_grad_norm`: 1.0
|
262 |
+
- `num_train_epochs`: 3
|
263 |
+
- `max_steps`: -1
|
264 |
+
- `lr_scheduler_type`: linear
|
265 |
+
- `lr_scheduler_kwargs`: {}
|
266 |
+
- `warmup_ratio`: 0.1
|
267 |
+
- `warmup_steps`: 0
|
268 |
+
- `log_level`: passive
|
269 |
+
- `log_level_replica`: warning
|
270 |
+
- `log_on_each_node`: True
|
271 |
+
- `logging_nan_inf_filter`: True
|
272 |
+
- `save_safetensors`: True
|
273 |
+
- `save_on_each_node`: False
|
274 |
+
- `save_only_model`: False
|
275 |
+
- `restore_callback_states_from_checkpoint`: False
|
276 |
+
- `no_cuda`: False
|
277 |
+
- `use_cpu`: False
|
278 |
+
- `use_mps_device`: False
|
279 |
+
- `seed`: 42
|
280 |
+
- `data_seed`: None
|
281 |
+
- `jit_mode_eval`: False
|
282 |
+
- `use_ipex`: False
|
283 |
+
- `bf16`: False
|
284 |
+
- `fp16`: True
|
285 |
+
- `fp16_opt_level`: O1
|
286 |
+
- `half_precision_backend`: auto
|
287 |
+
- `bf16_full_eval`: False
|
288 |
+
- `fp16_full_eval`: False
|
289 |
+
- `tf32`: None
|
290 |
+
- `local_rank`: 0
|
291 |
+
- `ddp_backend`: None
|
292 |
+
- `tpu_num_cores`: None
|
293 |
+
- `tpu_metrics_debug`: False
|
294 |
+
- `debug`: []
|
295 |
+
- `dataloader_drop_last`: False
|
296 |
+
- `dataloader_num_workers`: 0
|
297 |
+
- `dataloader_prefetch_factor`: None
|
298 |
+
- `past_index`: -1
|
299 |
+
- `disable_tqdm`: False
|
300 |
+
- `remove_unused_columns`: True
|
301 |
+
- `label_names`: None
|
302 |
+
- `load_best_model_at_end`: True
|
303 |
+
- `ignore_data_skip`: False
|
304 |
+
- `fsdp`: []
|
305 |
+
- `fsdp_min_num_params`: 0
|
306 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
307 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
308 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
309 |
+
- `deepspeed`: None
|
310 |
+
- `label_smoothing_factor`: 0.0
|
311 |
+
- `optim`: adamw_torch
|
312 |
+
- `optim_args`: None
|
313 |
+
- `adafactor`: False
|
314 |
+
- `group_by_length`: False
|
315 |
+
- `length_column_name`: length
|
316 |
+
- `ddp_find_unused_parameters`: False
|
317 |
+
- `ddp_bucket_cap_mb`: None
|
318 |
+
- `ddp_broadcast_buffers`: False
|
319 |
+
- `dataloader_pin_memory`: True
|
320 |
+
- `dataloader_persistent_workers`: False
|
321 |
+
- `skip_memory_metrics`: True
|
322 |
+
- `use_legacy_prediction_loop`: False
|
323 |
+
- `push_to_hub`: False
|
324 |
+
- `resume_from_checkpoint`: None
|
325 |
+
- `hub_model_id`: None
|
326 |
+
- `hub_strategy`: every_save
|
327 |
+
- `hub_private_repo`: False
|
328 |
+
- `hub_always_push`: False
|
329 |
+
- `gradient_checkpointing`: False
|
330 |
+
- `gradient_checkpointing_kwargs`: None
|
331 |
+
- `include_inputs_for_metrics`: False
|
332 |
+
- `eval_do_concat_batches`: True
|
333 |
+
- `fp16_backend`: auto
|
334 |
+
- `push_to_hub_model_id`: None
|
335 |
+
- `push_to_hub_organization`: None
|
336 |
+
- `mp_parameters`:
|
337 |
+
- `auto_find_batch_size`: False
|
338 |
+
- `full_determinism`: False
|
339 |
+
- `torchdynamo`: None
|
340 |
+
- `ray_scope`: last
|
341 |
+
- `ddp_timeout`: 1800
|
342 |
+
- `torch_compile`: False
|
343 |
+
- `torch_compile_backend`: None
|
344 |
+
- `torch_compile_mode`: None
|
345 |
+
- `dispatch_batches`: None
|
346 |
+
- `split_batches`: None
|
347 |
+
- `include_tokens_per_second`: False
|
348 |
+
- `include_num_input_tokens_seen`: False
|
349 |
+
- `neftune_noise_alpha`: None
|
350 |
+
- `optim_target_modules`: None
|
351 |
+
- `batch_eval_metrics`: False
|
352 |
+
- `eval_on_start`: False
|
353 |
+
- `eval_use_gather_object`: False
|
354 |
+
- `batch_sampler`: batch_sampler
|
355 |
+
- `multi_dataset_batch_sampler`: proportional
|
356 |
+
|
357 |
+
</details>
|
358 |
+
|
359 |
+
### Training Logs
|
360 |
+
<details><summary>Click to expand</summary>
|
361 |
+
|
362 |
+
| Epoch | Step | Training Loss | loss |
|
363 |
+
|:-----:|:----:|:-------------:|:------:|
|
364 |
+
| 0.025 | 25 | 0.6305 | - |
|
365 |
+
| 0.05 | 50 | 0.7491 | - |
|
366 |
+
| 0.075 | 75 | 0.6931 | - |
|
367 |
+
| 0.1 | 100 | 0.7093 | - |
|
368 |
+
| 0.125 | 125 | 0.631 | - |
|
369 |
+
| 0.15 | 150 | 0.6127 | - |
|
370 |
+
| 0.175 | 175 | 0.5963 | - |
|
371 |
+
| 0.2 | 200 | 0.6556 | - |
|
372 |
+
| 0.225 | 225 | 0.6831 | - |
|
373 |
+
| 0.25 | 250 | 0.6389 | - |
|
374 |
+
| 0.275 | 275 | 0.6913 | - |
|
375 |
+
| 0.3 | 300 | 0.6447 | - |
|
376 |
+
| 0.325 | 325 | 0.6993 | - |
|
377 |
+
| 0.35 | 350 | 0.6581 | - |
|
378 |
+
| 0.375 | 375 | 0.6695 | - |
|
379 |
+
| 0.4 | 400 | 0.7076 | - |
|
380 |
+
| 0.425 | 425 | 0.6301 | - |
|
381 |
+
| 0.45 | 450 | 0.6121 | - |
|
382 |
+
| 0.475 | 475 | 0.6439 | - |
|
383 |
+
| 0.5 | 500 | 0.6782 | - |
|
384 |
+
| 0.525 | 525 | 0.7025 | - |
|
385 |
+
| 0.55 | 550 | 0.7228 | - |
|
386 |
+
| 0.575 | 575 | 0.6065 | - |
|
387 |
+
| 0.6 | 600 | 0.6496 | - |
|
388 |
+
| 0.625 | 625 | 0.6816 | - |
|
389 |
+
| 0.65 | 650 | 0.6302 | - |
|
390 |
+
| 0.675 | 675 | 0.692 | - |
|
391 |
+
| 0.7 | 700 | 0.7533 | - |
|
392 |
+
| 0.725 | 725 | 0.6567 | - |
|
393 |
+
| 0.75 | 750 | 0.6472 | - |
|
394 |
+
| 0.775 | 775 | 0.6461 | - |
|
395 |
+
| 0.8 | 800 | 0.661 | - |
|
396 |
+
| 0.825 | 825 | 0.6897 | - |
|
397 |
+
| 0.85 | 850 | 0.6097 | - |
|
398 |
+
| 0.875 | 875 | 0.6284 | - |
|
399 |
+
| 0.9 | 900 | 0.5923 | - |
|
400 |
+
| 0.925 | 925 | 0.6642 | - |
|
401 |
+
| 0.95 | 950 | 0.6531 | - |
|
402 |
+
| 0.975 | 975 | 0.6705 | - |
|
403 |
+
| 1.0 | 1000 | 0.7137 | 0.6765 |
|
404 |
+
| 1.025 | 1025 | 0.6601 | - |
|
405 |
+
| 1.05 | 1050 | 0.6739 | - |
|
406 |
+
| 1.075 | 1075 | 0.6487 | - |
|
407 |
+
| 1.1 | 1100 | 0.6864 | - |
|
408 |
+
| 1.125 | 1125 | 0.7744 | - |
|
409 |
+
| 1.15 | 1150 | 0.6698 | - |
|
410 |
+
| 1.175 | 1175 | 0.6421 | - |
|
411 |
+
| 1.2 | 1200 | 0.633 | - |
|
412 |
+
| 1.225 | 1225 | 0.678 | - |
|
413 |
+
| 1.25 | 1250 | 0.6264 | - |
|
414 |
+
| 1.275 | 1275 | 0.721 | - |
|
415 |
+
| 1.3 | 1300 | 0.6736 | - |
|
416 |
+
| 1.325 | 1325 | 0.5332 | - |
|
417 |
+
| 1.35 | 1350 | 0.6576 | - |
|
418 |
+
| 1.375 | 1375 | 0.6625 | - |
|
419 |
+
| 1.4 | 1400 | 0.7248 | - |
|
420 |
+
| 1.425 | 1425 | 0.6188 | - |
|
421 |
+
| 1.45 | 1450 | 0.6452 | - |
|
422 |
+
| 1.475 | 1475 | 0.7024 | - |
|
423 |
+
| 1.5 | 1500 | 0.7005 | - |
|
424 |
+
| 1.525 | 1525 | 0.6219 | - |
|
425 |
+
| 1.55 | 1550 | 0.6525 | - |
|
426 |
+
| 1.575 | 1575 | 0.6718 | - |
|
427 |
+
| 1.6 | 1600 | 0.6738 | - |
|
428 |
+
| 1.625 | 1625 | 0.6558 | - |
|
429 |
+
| 1.65 | 1650 | 0.6236 | - |
|
430 |
+
| 1.675 | 1675 | 0.7126 | - |
|
431 |
+
| 1.7 | 1700 | 0.6822 | - |
|
432 |
+
| 1.725 | 1725 | 0.6324 | - |
|
433 |
+
| 1.75 | 1750 | 0.7036 | - |
|
434 |
+
| 1.775 | 1775 | 0.6765 | - |
|
435 |
+
| 1.8 | 1800 | 0.654 | - |
|
436 |
+
| 1.825 | 1825 | 0.6923 | - |
|
437 |
+
| 1.85 | 1850 | 0.6976 | - |
|
438 |
+
| 1.875 | 1875 | 0.6904 | - |
|
439 |
+
| 1.9 | 1900 | 0.6307 | - |
|
440 |
+
| 1.925 | 1925 | 0.6437 | - |
|
441 |
+
| 1.95 | 1950 | 0.6333 | - |
|
442 |
+
| 1.975 | 1975 | 0.6214 | - |
|
443 |
+
| 2.0 | 2000 | 0.6424 | 0.6765 |
|
444 |
+
| 2.025 | 2025 | 0.7041 | - |
|
445 |
+
| 2.05 | 2050 | 0.7112 | - |
|
446 |
+
| 2.075 | 2075 | 0.6696 | - |
|
447 |
+
| 2.1 | 2100 | 0.6739 | - |
|
448 |
+
| 2.125 | 2125 | 0.6315 | - |
|
449 |
+
| 2.15 | 2150 | 0.7649 | - |
|
450 |
+
| 2.175 | 2175 | 0.7079 | - |
|
451 |
+
| 2.2 | 2200 | 0.6549 | - |
|
452 |
+
| 2.225 | 2225 | 0.6548 | - |
|
453 |
+
| 2.25 | 2250 | 0.6647 | - |
|
454 |
+
| 2.275 | 2275 | 0.7568 | - |
|
455 |
+
| 2.3 | 2300 | 0.6659 | - |
|
456 |
+
| 2.325 | 2325 | 0.604 | - |
|
457 |
+
| 2.35 | 2350 | 0.6342 | - |
|
458 |
+
| 2.375 | 2375 | 0.6891 | - |
|
459 |
+
| 2.4 | 2400 | 0.6856 | - |
|
460 |
+
| 2.425 | 2425 | 0.6683 | - |
|
461 |
+
| 2.45 | 2450 | 0.678 | - |
|
462 |
+
| 2.475 | 2475 | 0.7102 | - |
|
463 |
+
| 2.5 | 2500 | 0.6606 | - |
|
464 |
+
| 2.525 | 2525 | 0.6634 | - |
|
465 |
+
| 2.55 | 2550 | 0.6443 | - |
|
466 |
+
| 2.575 | 2575 | 0.6122 | - |
|
467 |
+
| 2.6 | 2600 | 0.6926 | - |
|
468 |
+
| 2.625 | 2625 | 0.5957 | - |
|
469 |
+
| 2.65 | 2650 | 0.6933 | - |
|
470 |
+
| 2.675 | 2675 | 0.691 | - |
|
471 |
+
| 2.7 | 2700 | 0.7015 | - |
|
472 |
+
| 2.725 | 2725 | 0.7057 | - |
|
473 |
+
| 2.75 | 2750 | 0.6386 | - |
|
474 |
+
| 2.775 | 2775 | 0.6868 | - |
|
475 |
+
| 2.8 | 2800 | 0.6992 | - |
|
476 |
+
| 2.825 | 2825 | 0.6338 | - |
|
477 |
+
| 2.85 | 2850 | 0.6175 | - |
|
478 |
+
| 2.875 | 2875 | 0.6125 | - |
|
479 |
+
| 2.9 | 2900 | 0.6675 | - |
|
480 |
+
| 2.925 | 2925 | 0.6369 | - |
|
481 |
+
| 2.95 | 2950 | 0.6468 | - |
|
482 |
+
| 2.975 | 2975 | 0.6627 | - |
|
483 |
+
| 3.0 | 3000 | 0.6685 | 0.6765 |
|
484 |
+
|
485 |
+
</details>
|
486 |
+
|
487 |
+
### Framework Versions
|
488 |
+
- Python: 3.10.14
|
489 |
+
- Sentence Transformers: 3.0.1
|
490 |
+
- Transformers: 4.44.1
|
491 |
+
- PyTorch: 2.3.0
|
492 |
+
- Accelerate: 0.33.0
|
493 |
+
- Datasets: 2.19.1
|
494 |
+
- Tokenizers: 0.19.1
|
495 |
+
|
496 |
+
## Citation
|
497 |
+
|
498 |
+
### BibTeX
|
499 |
+
|
500 |
+
#### Sentence Transformers
|
501 |
+
```bibtex
|
502 |
+
@inproceedings{reimers-2019-sentence-bert,
|
503 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
504 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
505 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
506 |
+
month = "11",
|
507 |
+
year = "2019",
|
508 |
+
publisher = "Association for Computational Linguistics",
|
509 |
+
url = "https://arxiv.org/abs/1908.10084",
|
510 |
+
}
|
511 |
+
```
|
512 |
+
|
513 |
+
#### MultipleNegativesRankingLoss
|
514 |
+
```bibtex
|
515 |
+
@misc{henderson2017efficient,
|
516 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
517 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
518 |
+
year={2017},
|
519 |
+
eprint={1705.00652},
|
520 |
+
archivePrefix={arXiv},
|
521 |
+
primaryClass={cs.CL}
|
522 |
+
}
|
523 |
+
```
|
524 |
+
|
525 |
+
<!--
|
526 |
+
## Glossary
|
527 |
+
|
528 |
+
*Clearly define terms in order to be accessible across audiences.*
|
529 |
+
-->
|
530 |
+
|
531 |
+
<!--
|
532 |
+
## Model Card Authors
|
533 |
+
|
534 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
535 |
+
-->
|
536 |
+
|
537 |
+
<!--
|
538 |
+
## Model Card Contact
|
539 |
+
|
540 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
541 |
+
-->
|
checkpoint-3000/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
checkpoint-3000/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.1",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
checkpoint-3000/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1ff47b03af3a3a2fa508b0c49eb4cf3ec4bfdd9963efd0cb054ede511e81029
|
3 |
+
size 90864192
|
checkpoint-3000/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
checkpoint-3000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ec71cd11be0835691f1106dde1f7104cd64ed999f51f6ef5234cd6d1211121a
|
3 |
+
size 180604922
|
checkpoint-3000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e70658d2dce830ec2775cd030a9a347894f70cb32d918a10e8b522855a7a92a4
|
3 |
+
size 13990
|
checkpoint-3000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2655ce6913f75602cb91c3bc837ffd6b125a095fbaa4102a582ad9459d0d7d9c
|
3 |
+
size 1064
|
checkpoint-3000/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
checkpoint-3000/special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
checkpoint-3000/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-3000/tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
checkpoint-3000/trainer_state.json
ADDED
@@ -0,0 +1,906 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.6764523983001709,
|
3 |
+
"best_model_checkpoint": "autotrain-l21an-6mkt7/checkpoint-3000",
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.025,
|
13 |
+
"grad_norm": 3.444312810897827,
|
14 |
+
"learning_rate": 2.4999999999999998e-06,
|
15 |
+
"loss": 0.6305,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.05,
|
20 |
+
"grad_norm": 4.167919635772705,
|
21 |
+
"learning_rate": 4.9999999999999996e-06,
|
22 |
+
"loss": 0.7491,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.075,
|
27 |
+
"grad_norm": 2.0621402263641357,
|
28 |
+
"learning_rate": 7.5e-06,
|
29 |
+
"loss": 0.6931,
|
30 |
+
"step": 75
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.1,
|
34 |
+
"grad_norm": 2.2826991081237793,
|
35 |
+
"learning_rate": 9.999999999999999e-06,
|
36 |
+
"loss": 0.7093,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.125,
|
41 |
+
"grad_norm": 2.8610947132110596,
|
42 |
+
"learning_rate": 1.25e-05,
|
43 |
+
"loss": 0.631,
|
44 |
+
"step": 125
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.15,
|
48 |
+
"grad_norm": 2.2747015953063965,
|
49 |
+
"learning_rate": 1.5e-05,
|
50 |
+
"loss": 0.6127,
|
51 |
+
"step": 150
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.175,
|
55 |
+
"grad_norm": 1.3792694807052612,
|
56 |
+
"learning_rate": 1.7500000000000002e-05,
|
57 |
+
"loss": 0.5963,
|
58 |
+
"step": 175
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.2,
|
62 |
+
"grad_norm": 2.0398032665252686,
|
63 |
+
"learning_rate": 1.9999999999999998e-05,
|
64 |
+
"loss": 0.6556,
|
65 |
+
"step": 200
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.225,
|
69 |
+
"grad_norm": 1.9805101156234741,
|
70 |
+
"learning_rate": 2.25e-05,
|
71 |
+
"loss": 0.6831,
|
72 |
+
"step": 225
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.25,
|
76 |
+
"grad_norm": 1.3323885202407837,
|
77 |
+
"learning_rate": 2.5e-05,
|
78 |
+
"loss": 0.6389,
|
79 |
+
"step": 250
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.275,
|
83 |
+
"grad_norm": 1.6555352210998535,
|
84 |
+
"learning_rate": 2.75e-05,
|
85 |
+
"loss": 0.6913,
|
86 |
+
"step": 275
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.3,
|
90 |
+
"grad_norm": 1.4770078659057617,
|
91 |
+
"learning_rate": 3e-05,
|
92 |
+
"loss": 0.6447,
|
93 |
+
"step": 300
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.325,
|
97 |
+
"grad_norm": 1.9949244260787964,
|
98 |
+
"learning_rate": 2.9722222222222223e-05,
|
99 |
+
"loss": 0.6993,
|
100 |
+
"step": 325
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.35,
|
104 |
+
"grad_norm": 1.2942368984222412,
|
105 |
+
"learning_rate": 2.9444444444444445e-05,
|
106 |
+
"loss": 0.6581,
|
107 |
+
"step": 350
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.375,
|
111 |
+
"grad_norm": 1.8725063800811768,
|
112 |
+
"learning_rate": 2.9166666666666666e-05,
|
113 |
+
"loss": 0.6695,
|
114 |
+
"step": 375
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.4,
|
118 |
+
"grad_norm": 1.4848814010620117,
|
119 |
+
"learning_rate": 2.8888888888888888e-05,
|
120 |
+
"loss": 0.7076,
|
121 |
+
"step": 400
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.425,
|
125 |
+
"grad_norm": 1.406736969947815,
|
126 |
+
"learning_rate": 2.8611111111111113e-05,
|
127 |
+
"loss": 0.6301,
|
128 |
+
"step": 425
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.45,
|
132 |
+
"grad_norm": 1.2826756238937378,
|
133 |
+
"learning_rate": 2.8333333333333332e-05,
|
134 |
+
"loss": 0.6121,
|
135 |
+
"step": 450
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.475,
|
139 |
+
"grad_norm": 1.0705897808074951,
|
140 |
+
"learning_rate": 2.8055555555555557e-05,
|
141 |
+
"loss": 0.6439,
|
142 |
+
"step": 475
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.5,
|
146 |
+
"grad_norm": 1.7978061437606812,
|
147 |
+
"learning_rate": 2.777777777777778e-05,
|
148 |
+
"loss": 0.6782,
|
149 |
+
"step": 500
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.525,
|
153 |
+
"grad_norm": 1.2017405033111572,
|
154 |
+
"learning_rate": 2.75e-05,
|
155 |
+
"loss": 0.7025,
|
156 |
+
"step": 525
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.55,
|
160 |
+
"grad_norm": 1.4544589519500732,
|
161 |
+
"learning_rate": 2.7222222222222223e-05,
|
162 |
+
"loss": 0.7228,
|
163 |
+
"step": 550
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.575,
|
167 |
+
"grad_norm": 2.094083070755005,
|
168 |
+
"learning_rate": 2.6944444444444445e-05,
|
169 |
+
"loss": 0.6065,
|
170 |
+
"step": 575
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.6,
|
174 |
+
"grad_norm": 1.4134550094604492,
|
175 |
+
"learning_rate": 2.6666666666666667e-05,
|
176 |
+
"loss": 0.6496,
|
177 |
+
"step": 600
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.625,
|
181 |
+
"grad_norm": 1.1640647649765015,
|
182 |
+
"learning_rate": 2.6388888888888892e-05,
|
183 |
+
"loss": 0.6816,
|
184 |
+
"step": 625
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.65,
|
188 |
+
"grad_norm": 1.7982358932495117,
|
189 |
+
"learning_rate": 2.611111111111111e-05,
|
190 |
+
"loss": 0.6302,
|
191 |
+
"step": 650
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.675,
|
195 |
+
"grad_norm": 1.6336771249771118,
|
196 |
+
"learning_rate": 2.5833333333333336e-05,
|
197 |
+
"loss": 0.692,
|
198 |
+
"step": 675
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.7,
|
202 |
+
"grad_norm": 1.2203083038330078,
|
203 |
+
"learning_rate": 2.5555555555555557e-05,
|
204 |
+
"loss": 0.7533,
|
205 |
+
"step": 700
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.725,
|
209 |
+
"grad_norm": 1.4167596101760864,
|
210 |
+
"learning_rate": 2.5277777777777776e-05,
|
211 |
+
"loss": 0.6567,
|
212 |
+
"step": 725
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.75,
|
216 |
+
"grad_norm": 2.341327667236328,
|
217 |
+
"learning_rate": 2.5e-05,
|
218 |
+
"loss": 0.6472,
|
219 |
+
"step": 750
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.775,
|
223 |
+
"grad_norm": 1.1488889455795288,
|
224 |
+
"learning_rate": 2.4722222222222223e-05,
|
225 |
+
"loss": 0.6461,
|
226 |
+
"step": 775
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.8,
|
230 |
+
"grad_norm": 1.6008880138397217,
|
231 |
+
"learning_rate": 2.4444444444444445e-05,
|
232 |
+
"loss": 0.661,
|
233 |
+
"step": 800
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.825,
|
237 |
+
"grad_norm": 1.6397242546081543,
|
238 |
+
"learning_rate": 2.4166666666666667e-05,
|
239 |
+
"loss": 0.6897,
|
240 |
+
"step": 825
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.85,
|
244 |
+
"grad_norm": 1.567724347114563,
|
245 |
+
"learning_rate": 2.388888888888889e-05,
|
246 |
+
"loss": 0.6097,
|
247 |
+
"step": 850
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.875,
|
251 |
+
"grad_norm": 1.290542483329773,
|
252 |
+
"learning_rate": 2.3611111111111114e-05,
|
253 |
+
"loss": 0.6284,
|
254 |
+
"step": 875
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.9,
|
258 |
+
"grad_norm": 1.4457989931106567,
|
259 |
+
"learning_rate": 2.3333333333333336e-05,
|
260 |
+
"loss": 0.5923,
|
261 |
+
"step": 900
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.925,
|
265 |
+
"grad_norm": 1.1782793998718262,
|
266 |
+
"learning_rate": 2.3055555555555554e-05,
|
267 |
+
"loss": 0.6642,
|
268 |
+
"step": 925
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.95,
|
272 |
+
"grad_norm": 1.2478561401367188,
|
273 |
+
"learning_rate": 2.277777777777778e-05,
|
274 |
+
"loss": 0.6531,
|
275 |
+
"step": 950
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.975,
|
279 |
+
"grad_norm": 1.3522217273712158,
|
280 |
+
"learning_rate": 2.25e-05,
|
281 |
+
"loss": 0.6705,
|
282 |
+
"step": 975
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.0,
|
286 |
+
"grad_norm": 1.4155220985412598,
|
287 |
+
"learning_rate": 2.222222222222222e-05,
|
288 |
+
"loss": 0.7137,
|
289 |
+
"step": 1000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.0,
|
293 |
+
"eval_loss": 0.6765261292457581,
|
294 |
+
"eval_runtime": 37.4092,
|
295 |
+
"eval_samples_per_second": 53.463,
|
296 |
+
"eval_steps_per_second": 3.341,
|
297 |
+
"step": 1000
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.025,
|
301 |
+
"grad_norm": 1.0540518760681152,
|
302 |
+
"learning_rate": 2.1944444444444445e-05,
|
303 |
+
"loss": 0.6601,
|
304 |
+
"step": 1025
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 1.05,
|
308 |
+
"grad_norm": 1.219468116760254,
|
309 |
+
"learning_rate": 2.1666666666666667e-05,
|
310 |
+
"loss": 0.6739,
|
311 |
+
"step": 1050
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.075,
|
315 |
+
"grad_norm": 1.1928082704544067,
|
316 |
+
"learning_rate": 2.138888888888889e-05,
|
317 |
+
"loss": 0.6487,
|
318 |
+
"step": 1075
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 1.1,
|
322 |
+
"grad_norm": 1.0191409587860107,
|
323 |
+
"learning_rate": 2.111111111111111e-05,
|
324 |
+
"loss": 0.6864,
|
325 |
+
"step": 1100
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 1.125,
|
329 |
+
"grad_norm": 1.0731534957885742,
|
330 |
+
"learning_rate": 2.0833333333333333e-05,
|
331 |
+
"loss": 0.7744,
|
332 |
+
"step": 1125
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.15,
|
336 |
+
"grad_norm": 1.1843361854553223,
|
337 |
+
"learning_rate": 2.0555555555555558e-05,
|
338 |
+
"loss": 0.6698,
|
339 |
+
"step": 1150
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.175,
|
343 |
+
"grad_norm": 1.1600492000579834,
|
344 |
+
"learning_rate": 2.027777777777778e-05,
|
345 |
+
"loss": 0.6421,
|
346 |
+
"step": 1175
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 1.2,
|
350 |
+
"grad_norm": 1.3744503259658813,
|
351 |
+
"learning_rate": 1.9999999999999998e-05,
|
352 |
+
"loss": 0.633,
|
353 |
+
"step": 1200
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 1.225,
|
357 |
+
"grad_norm": 0.8186588287353516,
|
358 |
+
"learning_rate": 1.9722222222222224e-05,
|
359 |
+
"loss": 0.678,
|
360 |
+
"step": 1225
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.25,
|
364 |
+
"grad_norm": 1.2602007389068604,
|
365 |
+
"learning_rate": 1.9444444444444445e-05,
|
366 |
+
"loss": 0.6264,
|
367 |
+
"step": 1250
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 1.275,
|
371 |
+
"grad_norm": 1.5430500507354736,
|
372 |
+
"learning_rate": 1.9166666666666667e-05,
|
373 |
+
"loss": 0.721,
|
374 |
+
"step": 1275
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.3,
|
378 |
+
"grad_norm": 1.6438603401184082,
|
379 |
+
"learning_rate": 1.888888888888889e-05,
|
380 |
+
"loss": 0.6736,
|
381 |
+
"step": 1300
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.325,
|
385 |
+
"grad_norm": 1.1491776704788208,
|
386 |
+
"learning_rate": 1.861111111111111e-05,
|
387 |
+
"loss": 0.5332,
|
388 |
+
"step": 1325
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 1.35,
|
392 |
+
"grad_norm": 1.087183952331543,
|
393 |
+
"learning_rate": 1.8333333333333336e-05,
|
394 |
+
"loss": 0.6576,
|
395 |
+
"step": 1350
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 1.375,
|
399 |
+
"grad_norm": 1.6351675987243652,
|
400 |
+
"learning_rate": 1.8055555555555555e-05,
|
401 |
+
"loss": 0.6625,
|
402 |
+
"step": 1375
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 1.4,
|
406 |
+
"grad_norm": 1.5467578172683716,
|
407 |
+
"learning_rate": 1.7777777777777777e-05,
|
408 |
+
"loss": 0.7248,
|
409 |
+
"step": 1400
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 1.425,
|
413 |
+
"grad_norm": 1.1913565397262573,
|
414 |
+
"learning_rate": 1.7500000000000002e-05,
|
415 |
+
"loss": 0.6188,
|
416 |
+
"step": 1425
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.45,
|
420 |
+
"grad_norm": 1.1346111297607422,
|
421 |
+
"learning_rate": 1.7222222222222224e-05,
|
422 |
+
"loss": 0.6452,
|
423 |
+
"step": 1450
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.475,
|
427 |
+
"grad_norm": 1.3555978536605835,
|
428 |
+
"learning_rate": 1.6944444444444442e-05,
|
429 |
+
"loss": 0.7024,
|
430 |
+
"step": 1475
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 1.5,
|
434 |
+
"grad_norm": 0.8716872930526733,
|
435 |
+
"learning_rate": 1.6666666666666667e-05,
|
436 |
+
"loss": 0.7005,
|
437 |
+
"step": 1500
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 1.525,
|
441 |
+
"grad_norm": 0.9957846999168396,
|
442 |
+
"learning_rate": 1.638888888888889e-05,
|
443 |
+
"loss": 0.6219,
|
444 |
+
"step": 1525
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 1.55,
|
448 |
+
"grad_norm": 2.1997838020324707,
|
449 |
+
"learning_rate": 1.6111111111111115e-05,
|
450 |
+
"loss": 0.6525,
|
451 |
+
"step": 1550
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 1.575,
|
455 |
+
"grad_norm": 1.3860341310501099,
|
456 |
+
"learning_rate": 1.5833333333333333e-05,
|
457 |
+
"loss": 0.6718,
|
458 |
+
"step": 1575
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 1.6,
|
462 |
+
"grad_norm": 0.8452956676483154,
|
463 |
+
"learning_rate": 1.5555555555555555e-05,
|
464 |
+
"loss": 0.6738,
|
465 |
+
"step": 1600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.625,
|
469 |
+
"grad_norm": 0.9731984734535217,
|
470 |
+
"learning_rate": 1.527777777777778e-05,
|
471 |
+
"loss": 0.6558,
|
472 |
+
"step": 1625
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 1.65,
|
476 |
+
"grad_norm": 1.831750750541687,
|
477 |
+
"learning_rate": 1.5e-05,
|
478 |
+
"loss": 0.6236,
|
479 |
+
"step": 1650
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 1.675,
|
483 |
+
"grad_norm": 1.6755101680755615,
|
484 |
+
"learning_rate": 1.4722222222222222e-05,
|
485 |
+
"loss": 0.7126,
|
486 |
+
"step": 1675
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 1.7,
|
490 |
+
"grad_norm": 1.3757505416870117,
|
491 |
+
"learning_rate": 1.4444444444444444e-05,
|
492 |
+
"loss": 0.6822,
|
493 |
+
"step": 1700
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 1.725,
|
497 |
+
"grad_norm": 1.377435326576233,
|
498 |
+
"learning_rate": 1.4166666666666666e-05,
|
499 |
+
"loss": 0.6324,
|
500 |
+
"step": 1725
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 1.75,
|
504 |
+
"grad_norm": 1.0001251697540283,
|
505 |
+
"learning_rate": 1.388888888888889e-05,
|
506 |
+
"loss": 0.7036,
|
507 |
+
"step": 1750
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.775,
|
511 |
+
"grad_norm": 1.0013527870178223,
|
512 |
+
"learning_rate": 1.3611111111111111e-05,
|
513 |
+
"loss": 0.6765,
|
514 |
+
"step": 1775
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 1.8,
|
518 |
+
"grad_norm": 1.0746055841445923,
|
519 |
+
"learning_rate": 1.3333333333333333e-05,
|
520 |
+
"loss": 0.654,
|
521 |
+
"step": 1800
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 1.825,
|
525 |
+
"grad_norm": 0.6743106842041016,
|
526 |
+
"learning_rate": 1.3055555555555555e-05,
|
527 |
+
"loss": 0.6923,
|
528 |
+
"step": 1825
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 1.85,
|
532 |
+
"grad_norm": 0.9659077525138855,
|
533 |
+
"learning_rate": 1.2777777777777779e-05,
|
534 |
+
"loss": 0.6976,
|
535 |
+
"step": 1850
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 1.875,
|
539 |
+
"grad_norm": 0.7309139966964722,
|
540 |
+
"learning_rate": 1.25e-05,
|
541 |
+
"loss": 0.6904,
|
542 |
+
"step": 1875
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 1.9,
|
546 |
+
"grad_norm": 0.6239315271377563,
|
547 |
+
"learning_rate": 1.2222222222222222e-05,
|
548 |
+
"loss": 0.6307,
|
549 |
+
"step": 1900
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.925,
|
553 |
+
"grad_norm": 1.3958375453948975,
|
554 |
+
"learning_rate": 1.1944444444444444e-05,
|
555 |
+
"loss": 0.6437,
|
556 |
+
"step": 1925
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 1.95,
|
560 |
+
"grad_norm": 0.7617831230163574,
|
561 |
+
"learning_rate": 1.1666666666666668e-05,
|
562 |
+
"loss": 0.6333,
|
563 |
+
"step": 1950
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 1.975,
|
567 |
+
"grad_norm": 0.8432300686836243,
|
568 |
+
"learning_rate": 1.138888888888889e-05,
|
569 |
+
"loss": 0.6214,
|
570 |
+
"step": 1975
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 2.0,
|
574 |
+
"grad_norm": 1.236924409866333,
|
575 |
+
"learning_rate": 1.111111111111111e-05,
|
576 |
+
"loss": 0.6424,
|
577 |
+
"step": 2000
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 2.0,
|
581 |
+
"eval_loss": 0.6764588952064514,
|
582 |
+
"eval_runtime": 38.544,
|
583 |
+
"eval_samples_per_second": 51.889,
|
584 |
+
"eval_steps_per_second": 3.243,
|
585 |
+
"step": 2000
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.025,
|
589 |
+
"grad_norm": 1.2284152507781982,
|
590 |
+
"learning_rate": 1.0833333333333334e-05,
|
591 |
+
"loss": 0.7041,
|
592 |
+
"step": 2025
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 2.05,
|
596 |
+
"grad_norm": 0.9430116415023804,
|
597 |
+
"learning_rate": 1.0555555555555555e-05,
|
598 |
+
"loss": 0.7112,
|
599 |
+
"step": 2050
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 2.075,
|
603 |
+
"grad_norm": 0.5471211075782776,
|
604 |
+
"learning_rate": 1.0277777777777779e-05,
|
605 |
+
"loss": 0.6696,
|
606 |
+
"step": 2075
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 2.1,
|
610 |
+
"grad_norm": 0.9567949771881104,
|
611 |
+
"learning_rate": 9.999999999999999e-06,
|
612 |
+
"loss": 0.6739,
|
613 |
+
"step": 2100
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 2.125,
|
617 |
+
"grad_norm": 0.633762001991272,
|
618 |
+
"learning_rate": 9.722222222222223e-06,
|
619 |
+
"loss": 0.6315,
|
620 |
+
"step": 2125
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 2.15,
|
624 |
+
"grad_norm": 1.0539363622665405,
|
625 |
+
"learning_rate": 9.444444444444445e-06,
|
626 |
+
"loss": 0.7649,
|
627 |
+
"step": 2150
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 2.175,
|
631 |
+
"grad_norm": 0.9735732078552246,
|
632 |
+
"learning_rate": 9.166666666666668e-06,
|
633 |
+
"loss": 0.7079,
|
634 |
+
"step": 2175
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 2.2,
|
638 |
+
"grad_norm": 1.3620977401733398,
|
639 |
+
"learning_rate": 8.888888888888888e-06,
|
640 |
+
"loss": 0.6549,
|
641 |
+
"step": 2200
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 2.225,
|
645 |
+
"grad_norm": 0.9268941879272461,
|
646 |
+
"learning_rate": 8.611111111111112e-06,
|
647 |
+
"loss": 0.6548,
|
648 |
+
"step": 2225
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 2.25,
|
652 |
+
"grad_norm": 0.4519413709640503,
|
653 |
+
"learning_rate": 8.333333333333334e-06,
|
654 |
+
"loss": 0.6647,
|
655 |
+
"step": 2250
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 2.275,
|
659 |
+
"grad_norm": 0.8613296747207642,
|
660 |
+
"learning_rate": 8.055555555555557e-06,
|
661 |
+
"loss": 0.7568,
|
662 |
+
"step": 2275
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 2.3,
|
666 |
+
"grad_norm": 1.1156052350997925,
|
667 |
+
"learning_rate": 7.777777777777777e-06,
|
668 |
+
"loss": 0.6659,
|
669 |
+
"step": 2300
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 2.325,
|
673 |
+
"grad_norm": 0.8070225119590759,
|
674 |
+
"learning_rate": 7.5e-06,
|
675 |
+
"loss": 0.604,
|
676 |
+
"step": 2325
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 2.35,
|
680 |
+
"grad_norm": 1.2144221067428589,
|
681 |
+
"learning_rate": 7.222222222222222e-06,
|
682 |
+
"loss": 0.6342,
|
683 |
+
"step": 2350
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 2.375,
|
687 |
+
"grad_norm": 0.8116927742958069,
|
688 |
+
"learning_rate": 6.944444444444445e-06,
|
689 |
+
"loss": 0.6891,
|
690 |
+
"step": 2375
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 2.4,
|
694 |
+
"grad_norm": 0.8394978642463684,
|
695 |
+
"learning_rate": 6.666666666666667e-06,
|
696 |
+
"loss": 0.6856,
|
697 |
+
"step": 2400
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 2.425,
|
701 |
+
"grad_norm": 1.1582024097442627,
|
702 |
+
"learning_rate": 6.388888888888889e-06,
|
703 |
+
"loss": 0.6683,
|
704 |
+
"step": 2425
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 2.45,
|
708 |
+
"grad_norm": 0.9621151089668274,
|
709 |
+
"learning_rate": 6.111111111111111e-06,
|
710 |
+
"loss": 0.678,
|
711 |
+
"step": 2450
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 2.475,
|
715 |
+
"grad_norm": 1.0509181022644043,
|
716 |
+
"learning_rate": 5.833333333333334e-06,
|
717 |
+
"loss": 0.7102,
|
718 |
+
"step": 2475
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 2.5,
|
722 |
+
"grad_norm": 0.7675669193267822,
|
723 |
+
"learning_rate": 5.555555555555555e-06,
|
724 |
+
"loss": 0.6606,
|
725 |
+
"step": 2500
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 2.525,
|
729 |
+
"grad_norm": 0.9356604218482971,
|
730 |
+
"learning_rate": 5.277777777777778e-06,
|
731 |
+
"loss": 0.6634,
|
732 |
+
"step": 2525
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 2.55,
|
736 |
+
"grad_norm": 1.1379098892211914,
|
737 |
+
"learning_rate": 4.9999999999999996e-06,
|
738 |
+
"loss": 0.6443,
|
739 |
+
"step": 2550
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 2.575,
|
743 |
+
"grad_norm": 1.0013926029205322,
|
744 |
+
"learning_rate": 4.722222222222222e-06,
|
745 |
+
"loss": 0.6122,
|
746 |
+
"step": 2575
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 2.6,
|
750 |
+
"grad_norm": 0.771693229675293,
|
751 |
+
"learning_rate": 4.444444444444444e-06,
|
752 |
+
"loss": 0.6926,
|
753 |
+
"step": 2600
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 2.625,
|
757 |
+
"grad_norm": 0.7376611232757568,
|
758 |
+
"learning_rate": 4.166666666666667e-06,
|
759 |
+
"loss": 0.5957,
|
760 |
+
"step": 2625
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 2.65,
|
764 |
+
"grad_norm": 0.7340726256370544,
|
765 |
+
"learning_rate": 3.888888888888889e-06,
|
766 |
+
"loss": 0.6933,
|
767 |
+
"step": 2650
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 2.675,
|
771 |
+
"grad_norm": 0.7760947942733765,
|
772 |
+
"learning_rate": 3.611111111111111e-06,
|
773 |
+
"loss": 0.691,
|
774 |
+
"step": 2675
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 2.7,
|
778 |
+
"grad_norm": 0.9809922575950623,
|
779 |
+
"learning_rate": 3.3333333333333333e-06,
|
780 |
+
"loss": 0.7015,
|
781 |
+
"step": 2700
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 2.725,
|
785 |
+
"grad_norm": 0.9861670732498169,
|
786 |
+
"learning_rate": 3.0555555555555556e-06,
|
787 |
+
"loss": 0.7057,
|
788 |
+
"step": 2725
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 2.75,
|
792 |
+
"grad_norm": 0.8055828809738159,
|
793 |
+
"learning_rate": 2.7777777777777775e-06,
|
794 |
+
"loss": 0.6386,
|
795 |
+
"step": 2750
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 2.775,
|
799 |
+
"grad_norm": 1.0951838493347168,
|
800 |
+
"learning_rate": 2.4999999999999998e-06,
|
801 |
+
"loss": 0.6868,
|
802 |
+
"step": 2775
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 2.8,
|
806 |
+
"grad_norm": 1.086242437362671,
|
807 |
+
"learning_rate": 2.222222222222222e-06,
|
808 |
+
"loss": 0.6992,
|
809 |
+
"step": 2800
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 2.825,
|
813 |
+
"grad_norm": 0.6613348126411438,
|
814 |
+
"learning_rate": 1.9444444444444444e-06,
|
815 |
+
"loss": 0.6338,
|
816 |
+
"step": 2825
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 2.85,
|
820 |
+
"grad_norm": 0.944501519203186,
|
821 |
+
"learning_rate": 1.6666666666666667e-06,
|
822 |
+
"loss": 0.6175,
|
823 |
+
"step": 2850
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 2.875,
|
827 |
+
"grad_norm": 0.5407629609107971,
|
828 |
+
"learning_rate": 1.3888888888888887e-06,
|
829 |
+
"loss": 0.6125,
|
830 |
+
"step": 2875
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 2.9,
|
834 |
+
"grad_norm": 1.0618243217468262,
|
835 |
+
"learning_rate": 1.111111111111111e-06,
|
836 |
+
"loss": 0.6675,
|
837 |
+
"step": 2900
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 2.925,
|
841 |
+
"grad_norm": 0.6185476183891296,
|
842 |
+
"learning_rate": 8.333333333333333e-07,
|
843 |
+
"loss": 0.6369,
|
844 |
+
"step": 2925
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 2.95,
|
848 |
+
"grad_norm": 0.9023645520210266,
|
849 |
+
"learning_rate": 5.555555555555555e-07,
|
850 |
+
"loss": 0.6468,
|
851 |
+
"step": 2950
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 2.975,
|
855 |
+
"grad_norm": 1.4191973209381104,
|
856 |
+
"learning_rate": 2.7777777777777776e-07,
|
857 |
+
"loss": 0.6627,
|
858 |
+
"step": 2975
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"epoch": 3.0,
|
862 |
+
"grad_norm": 0.7791981101036072,
|
863 |
+
"learning_rate": 0.0,
|
864 |
+
"loss": 0.6685,
|
865 |
+
"step": 3000
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 3.0,
|
869 |
+
"eval_loss": 0.6764523983001709,
|
870 |
+
"eval_runtime": 38.9354,
|
871 |
+
"eval_samples_per_second": 51.367,
|
872 |
+
"eval_steps_per_second": 3.21,
|
873 |
+
"step": 3000
|
874 |
+
}
|
875 |
+
],
|
876 |
+
"logging_steps": 25,
|
877 |
+
"max_steps": 3000,
|
878 |
+
"num_input_tokens_seen": 0,
|
879 |
+
"num_train_epochs": 3,
|
880 |
+
"save_steps": 500,
|
881 |
+
"stateful_callbacks": {
|
882 |
+
"EarlyStoppingCallback": {
|
883 |
+
"args": {
|
884 |
+
"early_stopping_patience": 5,
|
885 |
+
"early_stopping_threshold": 0.01
|
886 |
+
},
|
887 |
+
"attributes": {
|
888 |
+
"early_stopping_patience_counter": 0
|
889 |
+
}
|
890 |
+
},
|
891 |
+
"TrainerControl": {
|
892 |
+
"args": {
|
893 |
+
"should_epoch_stop": false,
|
894 |
+
"should_evaluate": false,
|
895 |
+
"should_log": false,
|
896 |
+
"should_save": true,
|
897 |
+
"should_training_stop": true
|
898 |
+
},
|
899 |
+
"attributes": {}
|
900 |
+
}
|
901 |
+
},
|
902 |
+
"total_flos": 0.0,
|
903 |
+
"train_batch_size": 8,
|
904 |
+
"trial_name": null,
|
905 |
+
"trial_params": null
|
906 |
+
}
|
checkpoint-3000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:589663a5d5d4c2ad6cadb41f9c6f0fc1833a3eb1b7861c2bbe91f737ce19deb2
|
3 |
+
size 5432
|
checkpoint-3000/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.1",
|
5 |
+
"pytorch": "2.3.0"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1ff47b03af3a3a2fa508b0c49eb4cf3ec4bfdd9963efd0cb054ede511e81029
|
3 |
+
size 90864192
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724509043.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1958b35b9a85b4ad73968ca3f6903dd3a7abac6fe2551122b59276de851c8307
|
3 |
+
size 30768
|
runs/Aug24_14-17-20_r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl/events.out.tfevents.1724511395.r-booster-team-gpt2-vq6zx4bx-737ae-o6rpl.119.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:959a880d6430fb04462fc025bd34cdd0f0d9e6298bec70f0bf102dae21c923e4
|
3 |
+
size 359
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:589663a5d5d4c2ad6cadb41f9c6f0fc1833a3eb1b7861c2bbe91f737ce19deb2
|
3 |
+
size 5432
|
training_params.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"data_path": "autotrain-l21an-6mkt7/autotrain-data",
|
3 |
+
"model": "sentence-transformers/all-MiniLM-L6-v2",
|
4 |
+
"lr": 3e-05,
|
5 |
+
"epochs": 3,
|
6 |
+
"max_seq_length": 128,
|
7 |
+
"batch_size": 8,
|
8 |
+
"warmup_ratio": 0.1,
|
9 |
+
"gradient_accumulation": 1,
|
10 |
+
"optimizer": "adamw_torch",
|
11 |
+
"scheduler": "linear",
|
12 |
+
"weight_decay": 0.0,
|
13 |
+
"max_grad_norm": 1.0,
|
14 |
+
"seed": 42,
|
15 |
+
"train_split": "train",
|
16 |
+
"valid_split": "validation",
|
17 |
+
"logging_steps": -1,
|
18 |
+
"project_name": "autotrain-l21an-6mkt7",
|
19 |
+
"auto_find_batch_size": false,
|
20 |
+
"mixed_precision": "fp16",
|
21 |
+
"save_total_limit": 1,
|
22 |
+
"push_to_hub": true,
|
23 |
+
"eval_strategy": "epoch",
|
24 |
+
"username": "booster-team",
|
25 |
+
"log": "tensorboard",
|
26 |
+
"early_stopping_patience": 5,
|
27 |
+
"early_stopping_threshold": 0.01,
|
28 |
+
"trainer": "qa",
|
29 |
+
"sentence1_column": "autotrain_sentence1",
|
30 |
+
"sentence2_column": "autotrain_sentence2",
|
31 |
+
"sentence3_column": "autotrain_sentence3",
|
32 |
+
"target_column": "autotrain_target"
|
33 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|