main cpp file upload
Browse files- btlm_model_wip.cpp +410 -0
btlm_model_wip.cpp
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "ggml/ggml.h"
|
2 |
+
|
3 |
+
#include "common-ggml.h"
|
4 |
+
#include "common.h"
|
5 |
+
|
6 |
+
#include <cassert>
|
7 |
+
#include <cinttypes>
|
8 |
+
#include <cmath>
|
9 |
+
#include <cstdio>
|
10 |
+
#include <cstring>
|
11 |
+
#include <fstream>
|
12 |
+
#include <iostream>
|
13 |
+
#include <map>
|
14 |
+
#include <stdint.h>
|
15 |
+
#include <string>
|
16 |
+
#include <vector>
|
17 |
+
|
18 |
+
struct btlm_vocab {
|
19 |
+
using id = int32_t;
|
20 |
+
using token = std::string;
|
21 |
+
|
22 |
+
std::map<token, id> token_to_id;
|
23 |
+
std::map<id, token> id_to_token;
|
24 |
+
std::vector<std::string> special_tokens;
|
25 |
+
};
|
26 |
+
|
27 |
+
struct btlm_params {
|
28 |
+
int32_t seed = -1; // RNG seed
|
29 |
+
int32_t n_threads = std::min(4, (int32_t)std::thread::hardware_concurrency());
|
30 |
+
int32_t n_predict = 200; // new tokens to predict
|
31 |
+
int32_t n_batch = 8; // batch size for prompt processing
|
32 |
+
|
33 |
+
// sampling parameters
|
34 |
+
int32_t top_k = 40;
|
35 |
+
float top_p = 0.9f;
|
36 |
+
float temp = 0.9f;
|
37 |
+
int32_t repeat_last_n = 64;
|
38 |
+
float repeat_penalty = 1.00f;
|
39 |
+
|
40 |
+
std::string model =
|
41 |
+
"/home/madman/Desktop/ml_play/ml_models/btlm-3b.ggml.bin"; // model path
|
42 |
+
std::string prompt = "Capital of Nepal is";
|
43 |
+
std::string token_test = "";
|
44 |
+
};
|
45 |
+
|
46 |
+
struct btlm_hparams {
|
47 |
+
int32_t n_vocab;
|
48 |
+
int32_t n_ctx;
|
49 |
+
int32_t n_embd;
|
50 |
+
int32_t n_head;
|
51 |
+
int32_t n_layer;
|
52 |
+
int32_t n_inner;
|
53 |
+
int32_t ftype;
|
54 |
+
};
|
55 |
+
|
56 |
+
struct btlm_layer {
|
57 |
+
// normalization
|
58 |
+
struct ggml_tensor *ln_1_g;
|
59 |
+
struct ggml_tensor *ln_1_b;
|
60 |
+
|
61 |
+
struct ggml_tensor *ln_2_g;
|
62 |
+
struct ggml_tensor *ln_2_b;
|
63 |
+
|
64 |
+
// attention
|
65 |
+
struct ggml_tensor *c_attn_attn_w;
|
66 |
+
struct ggml_tensor *c_attn_attn_b;
|
67 |
+
struct ggml_tensor *c_attn_attn_scb;
|
68 |
+
|
69 |
+
struct ggml_tensor *c_attn_proj_w;
|
70 |
+
struct ggml_tensor *c_attn_proj_b;
|
71 |
+
struct ggml_tensor *c_attn_proj_scb;
|
72 |
+
|
73 |
+
// mlp
|
74 |
+
struct ggml_tensor *c_mlp_fc_w;
|
75 |
+
struct ggml_tensor *c_mlp_fc_b;
|
76 |
+
struct ggml_tensor *c_mlp_fc_scb;
|
77 |
+
|
78 |
+
struct ggml_tensor *c_mlp_fc2_w;
|
79 |
+
struct ggml_tensor *c_mlp_fc2_b;
|
80 |
+
struct ggml_tensor *c_mlp_fc2_scb;
|
81 |
+
|
82 |
+
struct ggml_tensor *c_mlp_proj_w;
|
83 |
+
struct ggml_tensor *c_mlp_proj_b;
|
84 |
+
struct ggml_tensor *c_mlp_proj_scb;
|
85 |
+
};
|
86 |
+
|
87 |
+
struct btlm_model {
|
88 |
+
btlm_hparams hparams;
|
89 |
+
|
90 |
+
// normalization
|
91 |
+
struct ggml_tensor *ln_f_g;
|
92 |
+
struct ggml_tensor *ln_f_b;
|
93 |
+
|
94 |
+
struct ggml_tensor *wte; // position embedding
|
95 |
+
struct ggml_tensor *alibi_slopes;
|
96 |
+
struct ggml_tensor *lm_head; // language model head
|
97 |
+
|
98 |
+
std::vector<btlm_layer> layers;
|
99 |
+
|
100 |
+
// key + value memory
|
101 |
+
struct ggml_tensor *memory_k;
|
102 |
+
struct ggml_tensor *memory_v;
|
103 |
+
|
104 |
+
//
|
105 |
+
struct ggml_context *ctx;
|
106 |
+
std::map<std::string, struct ggml_tensor *> tensors;
|
107 |
+
};
|
108 |
+
|
109 |
+
// load the model's weights from a file
|
110 |
+
bool btlm_model_load(const std::string &fname, btlm_model &model,
|
111 |
+
btlm_vocab &vocab) {
|
112 |
+
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
113 |
+
|
114 |
+
auto fin = std::ifstream(fname, std::ios::binary);
|
115 |
+
if (!fin) {
|
116 |
+
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
117 |
+
return false;
|
118 |
+
}
|
119 |
+
|
120 |
+
// verify magic
|
121 |
+
{
|
122 |
+
uint32_t magic;
|
123 |
+
fin.read((char *)&magic, sizeof(magic));
|
124 |
+
if (magic != GGML_FILE_MAGIC) {
|
125 |
+
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__,
|
126 |
+
fname.c_str());
|
127 |
+
return false;
|
128 |
+
}
|
129 |
+
}
|
130 |
+
|
131 |
+
// load hparams
|
132 |
+
{
|
133 |
+
auto &hparams = model.hparams;
|
134 |
+
|
135 |
+
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab));
|
136 |
+
fin.read((char *)&hparams.n_ctx, sizeof(hparams.n_ctx));
|
137 |
+
fin.read((char *)&hparams.n_embd, sizeof(hparams.n_embd));
|
138 |
+
fin.read((char *)&hparams.n_head, sizeof(hparams.n_head));
|
139 |
+
fin.read((char *)&hparams.n_layer, sizeof(hparams.n_layer));
|
140 |
+
fin.read((char *)&hparams.n_inner, sizeof(hparams.n_inner));
|
141 |
+
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype));
|
142 |
+
|
143 |
+
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
144 |
+
|
145 |
+
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
146 |
+
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
147 |
+
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
148 |
+
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
149 |
+
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
150 |
+
printf("%s: n_inner = %d\n", __func__, hparams.n_inner);
|
151 |
+
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
152 |
+
printf("%s: qntvr = %d\n", __func__, qntvr);
|
153 |
+
|
154 |
+
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
155 |
+
}
|
156 |
+
|
157 |
+
// for the big tensors, we have the option to store the data in 16-bit floats
|
158 |
+
// or quantized in order to save memory and also to speed up the computation
|
159 |
+
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype));
|
160 |
+
if (wtype == GGML_TYPE_COUNT) {
|
161 |
+
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n",
|
162 |
+
__func__, fname.c_str(), model.hparams.ftype);
|
163 |
+
return false;
|
164 |
+
}
|
165 |
+
|
166 |
+
auto &ctx = model.ctx;
|
167 |
+
size_t ctx_size = 0;
|
168 |
+
|
169 |
+
{
|
170 |
+
|
171 |
+
ctx_size = 1024 * 1024 * 8000u; // fixme => actually calculate this
|
172 |
+
|
173 |
+
printf("%s: ggml tensor size = %d bytes\n", __func__,
|
174 |
+
(int)sizeof(ggml_tensor));
|
175 |
+
printf("%s: ggml ctx size = %6.2f MB\n", __func__,
|
176 |
+
ctx_size / (1024.0 * 1024.0));
|
177 |
+
printf("%s: ggml ctx size = %d \n", __func__, ctx_size);
|
178 |
+
}
|
179 |
+
|
180 |
+
// create the ggml context
|
181 |
+
{
|
182 |
+
struct ggml_init_params params = {
|
183 |
+
/*.mem_size =*/ctx_size,
|
184 |
+
/*.mem_buffer =*/NULL,
|
185 |
+
/*.no_alloc =*/false,
|
186 |
+
};
|
187 |
+
|
188 |
+
model.ctx = ggml_init(params);
|
189 |
+
if (!model.ctx) {
|
190 |
+
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
191 |
+
return false;
|
192 |
+
}
|
193 |
+
}
|
194 |
+
|
195 |
+
// load vocab
|
196 |
+
{
|
197 |
+
int32_t n_vocab = model.hparams.n_vocab;
|
198 |
+
|
199 |
+
std::string word;
|
200 |
+
std::vector<char> buf(128);
|
201 |
+
|
202 |
+
for (int i = 0; i < n_vocab; i++) {
|
203 |
+
uint32_t len;
|
204 |
+
fin.read((char *)&len, sizeof(len));
|
205 |
+
|
206 |
+
buf.resize(len);
|
207 |
+
fin.read((char *)buf.data(), len);
|
208 |
+
word.assign(buf.data(), len);
|
209 |
+
|
210 |
+
// printf("%s \n", word.c_str());
|
211 |
+
|
212 |
+
vocab.token_to_id[word] = i;
|
213 |
+
vocab.id_to_token[i] = word;
|
214 |
+
}
|
215 |
+
}
|
216 |
+
|
217 |
+
{
|
218 |
+
|
219 |
+
// alloc memory
|
220 |
+
|
221 |
+
const auto &hparams = model.hparams;
|
222 |
+
|
223 |
+
const int n_embd = hparams.n_embd;
|
224 |
+
const int n_layer = hparams.n_layer;
|
225 |
+
// const int n_ctx = hparams.n_ctx;
|
226 |
+
const int n_vocab = hparams.n_vocab;
|
227 |
+
|
228 |
+
model.layers.resize(n_layer);
|
229 |
+
|
230 |
+
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
231 |
+
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
232 |
+
model.wte = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
|
233 |
+
model.lm_head = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_vocab);
|
234 |
+
model.alibi_slopes = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 32);
|
235 |
+
|
236 |
+
// map by name
|
237 |
+
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
238 |
+
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
239 |
+
model.tensors["model/wte"] = model.wte;
|
240 |
+
model.tensors["model/lm_head"] = model.lm_head;
|
241 |
+
model.tensors["model/relative_pe/slopes"] = model.alibi_slopes;
|
242 |
+
|
243 |
+
for (int i = 0; i < n_layer; ++i) {
|
244 |
+
auto &layer = model.layers[i];
|
245 |
+
|
246 |
+
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
247 |
+
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
248 |
+
|
249 |
+
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
250 |
+
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
251 |
+
|
252 |
+
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 3 * n_embd, n_embd );
|
253 |
+
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);
|
254 |
+
layer.c_attn_attn_scb =
|
255 |
+
ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 3 * n_embd);
|
256 |
+
|
257 |
+
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, n_embd);
|
258 |
+
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
259 |
+
layer.c_attn_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
260 |
+
|
261 |
+
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, 6832, n_embd);
|
262 |
+
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
|
263 |
+
layer.c_mlp_fc_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
|
264 |
+
|
265 |
+
layer.c_mlp_fc2_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6832 );
|
266 |
+
layer.c_mlp_fc2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
|
267 |
+
layer.c_mlp_fc2_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 6826);
|
268 |
+
|
269 |
+
layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, GGML_TYPE_F16, n_embd, 6848);
|
270 |
+
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
271 |
+
layer.c_mlp_proj_scb = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_embd);
|
272 |
+
|
273 |
+
// map by name
|
274 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
275 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
276 |
+
|
277 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
278 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
279 |
+
|
280 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
281 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
282 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/scb"] = layer.c_attn_attn_scb;
|
283 |
+
|
284 |
+
|
285 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] =
|
286 |
+
layer.c_attn_proj_w;
|
287 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] =
|
288 |
+
layer.c_attn_proj_b;
|
289 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/scb"] =
|
290 |
+
layer.c_attn_proj_scb;
|
291 |
+
|
292 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] =
|
293 |
+
layer.c_mlp_fc_w;
|
294 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] =
|
295 |
+
layer.c_mlp_fc_b;
|
296 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/scb"] =
|
297 |
+
layer.c_mlp_fc_scb;
|
298 |
+
|
299 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/w"] =
|
300 |
+
layer.c_mlp_fc2_w;
|
301 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/b"] =
|
302 |
+
layer.c_mlp_fc2_b;
|
303 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc2/scb"] =
|
304 |
+
layer.c_mlp_fc2_scb;
|
305 |
+
|
306 |
+
|
307 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] =
|
308 |
+
layer.c_mlp_proj_w;
|
309 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] =
|
310 |
+
layer.c_mlp_proj_b;
|
311 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/scb"] =
|
312 |
+
layer.c_mlp_proj_scb;
|
313 |
+
}
|
314 |
+
}
|
315 |
+
|
316 |
+
// load weights
|
317 |
+
{
|
318 |
+
size_t total_size = 0;
|
319 |
+
|
320 |
+
bool has_lm_head = false;
|
321 |
+
|
322 |
+
while (true) {
|
323 |
+
int32_t n_dims;
|
324 |
+
int32_t length;
|
325 |
+
int32_t ttype;
|
326 |
+
|
327 |
+
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
328 |
+
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
329 |
+
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype));
|
330 |
+
|
331 |
+
if (fin.eof()) {
|
332 |
+
break;
|
333 |
+
}
|
334 |
+
|
335 |
+
int32_t nelements = 1;
|
336 |
+
int32_t ne[2] = {1, 1};
|
337 |
+
for (int i = 0; i < n_dims; ++i) {
|
338 |
+
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
339 |
+
nelements *= ne[i];
|
340 |
+
}
|
341 |
+
|
342 |
+
std::string name(length, 0);
|
343 |
+
fin.read(&name[0], length);
|
344 |
+
|
345 |
+
printf("processing tensor '%s' in model file\n", name.data());
|
346 |
+
|
347 |
+
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
348 |
+
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__,
|
349 |
+
name.data());
|
350 |
+
return false;
|
351 |
+
}
|
352 |
+
|
353 |
+
auto tensor = model.tensors[name.data()];
|
354 |
+
if (ggml_nelements(tensor) != nelements) {
|
355 |
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n",
|
356 |
+
__func__, name.data());
|
357 |
+
return false;
|
358 |
+
}
|
359 |
+
|
360 |
+
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
361 |
+
fprintf(stderr,
|
362 |
+
"%s: tensor '%s' has wrong shape in model file: got [%d, %d], "
|
363 |
+
"expected [%d, %d]\n",
|
364 |
+
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1],
|
365 |
+
ne[0], ne[1]);
|
366 |
+
return false;
|
367 |
+
}
|
368 |
+
|
369 |
+
// for debugging
|
370 |
+
if (1) {
|
371 |
+
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n",
|
372 |
+
name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)),
|
373 |
+
ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor));
|
374 |
+
}
|
375 |
+
|
376 |
+
const size_t bpe = ggml_type_size(ggml_type(ttype));
|
377 |
+
|
378 |
+
if ((nelements * bpe) / ggml_blck_size(tensor->type) !=
|
379 |
+
ggml_nbytes(tensor)) {
|
380 |
+
fprintf(stderr,
|
381 |
+
"%s: tensor '%s' has wrong size in model file: got %zu, "
|
382 |
+
"expected %zu\n",
|
383 |
+
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe);
|
384 |
+
return false;
|
385 |
+
}
|
386 |
+
|
387 |
+
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
388 |
+
|
389 |
+
|
390 |
+
total_size += ggml_nbytes(tensor);
|
391 |
+
}
|
392 |
+
|
393 |
+
printf("%s: model size = %8.2f MB\n", __func__,
|
394 |
+
total_size / 1024.0 / 1024.0);
|
395 |
+
}
|
396 |
+
|
397 |
+
fin.close();
|
398 |
+
|
399 |
+
return true;
|
400 |
+
}
|
401 |
+
|
402 |
+
int main(int argc, char **argv) {
|
403 |
+
btlm_params params;
|
404 |
+
btlm_model models;
|
405 |
+
btlm_vocab vocab;
|
406 |
+
|
407 |
+
btlm_model_load(params.model, models, vocab);
|
408 |
+
|
409 |
+
return 0;
|
410 |
+
}
|