Somethings / QuestionAnswering.py
botcon's picture
Upload 2 files
c179832
from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, AutoModelForQuestionAnswering
from transformers.modeling_outputs import ModelOutput
from typing import Optional, Tuple, Union
import numpy as np
from tqdm import tqdm
import evaluate
import torch
from dataclasses import dataclass
from datasets import load_dataset, concatenate_datasets
from torch import nn
from torch.nn import CrossEntropyLoss
import collections
import re
train = False
test = True
PEFT = False
tf32 = True
fp16 = True
trained_model = "LUKE_squad_finetuned_qa_tf32"
train_checkpoint = None
squad_shift = False
# For testing
tokenizer_list = ["xlnet-base-cased"]
model_list = ["botcon/XLNET_squad_finetuned_large"]
question_list = ["who", "what", "where", "when", "which", "how", "whom", ".*"]
base_tokenizer = "xlnet-base-cased"
base_model = "studio-ousia/luke-base"
# base_tokenizer = "xlnet-base-cased"
# base_model = "xlnet-base-cased"
# base_tokenizer = "bert-base-cased"
# base_model = "SpanBERT/spanbert-base-cased"
torch.backends.cuda.matmul.allow_tf32 = tf32
torch.backends.cudnn.allow_tf32 = tf32
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/luke/modeling_luke.py#L319-L353
# Taken from HF repository, easier to include additional features -- Currently identical to LukeForQuestionAnswering by H
@dataclass
class LukeQuestionAnsweringModelOutput(ModelOutput):
"""
Outputs of question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class AugmentedLukeForQuestionAnswering(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
# This is 2.
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
'''
Any improvement to the model are expected here. Additional features, anything...
'''
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.linear_dropout = nn.Dropout(0.1)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.FloatTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.linear_dropout(sequence_output)
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits : torch.Tensor = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
return tuple(
v
for v in [
total_loss,
start_logits,
end_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
# Get data to train model - squadshift is designed as a validation/testing set, so there are multiple answers, take the shortest
def get_squadshifts_training():
wiki = load_dataset("squadshifts", "new_wiki")["test"]
nyt = load_dataset("squadshifts", "nyt")["test"]
reddit = load_dataset("squadshifts", "reddit")["test"]
raw_dataset = concatenate_datasets([wiki, nyt, reddit])
updated = raw_dataset.map(validation_to_train)
return updated
def validation_to_train(example):
answers = example["answers"]
answer_text = answers["text"]
index_min = min(range(len(answer_text)), key=lambda x : len(answer_text.__getitem__(x)))
answers["text"] = answers["text"][index_min:index_min+1]
answers["answer_start"] = answers["answer_start"][index_min:index_min+1]
return example
# Get subset with specific question word
def get_dataset(dataset, pattern):
return dataset.filter(lambda x : bool(re.search(r"\b{}\b".format(pattern), x["question"], flags=re.IGNORECASE)))
if __name__ == "__main__":
# Setting up tokenizer and helper functions
# Work-around for FastTokenizer - RoBERTa and LUKE share the same subword vocab, and we are not using entities functions of LUKE-tokenizer anyways
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
# Necessary initialization
max_length = 512
stride = 128
batch_size = 8
n_best = 20
max_answer_length = 30
metric = evaluate.load("squad")
raw_datasets = load_dataset("squad")
raw_train = raw_datasets["train"]
raw_validation = raw_datasets["validation"]
def compute_metrics(start_logits, end_logits, features, examples):
example_to_features = collections.defaultdict(list)
for idx, feature in enumerate(features):
example_to_features[feature["example_id"]].append(idx)
predicted_answers = []
for example in tqdm(examples):
example_id = example["id"]
context = example["context"]
answers = []
# Loop through all features associated with that example
for feature_index in example_to_features[example_id]:
start_logit = start_logits[feature_index]
end_logit = end_logits[feature_index]
offsets = features[feature_index]["offset_mapping"]
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Skip answers that are not fully in the context
if offsets[start_index] is None or offsets[end_index] is None:
continue
# Skip answers with a length that is either < 0 or > max_answer_length
if (
end_index < start_index
or end_index - start_index + 1 > max_answer_length
):
continue
answer = {
"text": context[offsets[start_index][0] : offsets[end_index][1]],
"logit_score": start_logit[start_index] + end_logit[end_index],
}
answers.append(answer)
# Select the answer with the best score
if len(answers) > 0:
best_answer = max(answers, key=lambda x: x["logit_score"])
predicted_answers.append(
{"id": example_id, "prediction_text": best_answer["text"]}
)
else:
predicted_answers.append({"id": example_id, "prediction_text": ""})
theoretical_answers = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples]
return metric.compute(predictions=predicted_answers, references=theoretical_answers)
def preprocess_training_examples(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs.pop("offset_mapping")
sample_map = inputs.pop("overflow_to_sample_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
sample_idx = sample_map[i]
answer = answers[sample_idx]
start_char = answer["answer_start"][0]
end_char = answer["answer_start"][0] + len(answer["text"][0])
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label is (0, 0)
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
def preprocess_validation_examples(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_map = inputs.pop("overflow_to_sample_mapping")
example_ids = []
for i in range(len(inputs["input_ids"])):
sample_idx = sample_map[i]
example_ids.append(examples["id"][sample_idx])
sequence_ids = inputs.sequence_ids(i)
offset = inputs["offset_mapping"][i]
inputs["offset_mapping"][i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
inputs["example_id"] = example_ids
return inputs
if train:
model = AutoModelForQuestionAnswering.from_pretrained(base_model).to(device)
model.train()
if squad_shift:
raw_train = get_squadshifts_training()
train_dataset = raw_train.map(
preprocess_training_examples,
batched=True,
remove_columns=raw_train.column_names,
)
validation_dataset = raw_validation.map(
preprocess_validation_examples,
batched=True,
remove_columns=raw_validation.column_names,
)
# --------------- PEFT -------------------- # One epoch without PEFT took about 2h on my computer with CUDA - performance of PEFT kinda ass though
if PEFT:
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
# ---- For all linear layers ----
import re
pattern = r'\((\w+)\): Linear'
linear_layers = re.findall(pattern, str(model.modules))
target_modules = list(set(linear_layers))
# If using peft, can consider increaisng r for better performance
peft_config = LoraConfig(
task_type=TaskType.QUESTION_ANS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=target_modules, bias='all'
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
trained_model += "_PEFT"
# ------------------------------------------ #
args = TrainingArguments(
trained_model,
evaluation_strategy = "no",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
push_to_hub=True,
fp16=fp16
)
trainer = Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=validation_dataset,
data_collator=default_data_collator,
tokenizer=tokenizer
)
trainer.train(train_checkpoint)
if test:
out = "out.txt"
for j in range(1):
# model = AutoModelForQuestionAnswering.from_pretrained(model_list[j]).to(device)
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_list[j])
# Normal case
# test_validation = raw_validation
for question in question_list:
model_name = "botcon/XLNET_squad_finetuned_large"
model = AutoModelForQuestionAnswering.from_pretrained(model_name).to(device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
test_validation = get_dataset(raw_validation, question)
exact_match = 0
f1 = 0
validation_size = 50
start = 0
end = validation_size
with torch.no_grad():
while start < len(test_validation):
small_eval_set = test_validation.select(range(start, min(end, len(test_validation))))
eval_set = small_eval_set.map(
preprocess_validation_examples,
batched=True,
remove_columns=test_validation.column_names
)
eval_set_for_model = eval_set.remove_columns(["example_id", "offset_mapping"])
eval_set_for_model.set_format("torch")
batch = {k: eval_set_for_model[k].to(device) for k in eval_set_for_model.column_names}
outputs = model(**batch)
start_logits = outputs.start_logits.cpu().numpy()
end_logits = outputs.end_logits.cpu().numpy()
res = compute_metrics(start_logits, end_logits, eval_set, small_eval_set)
exact_match += res['exact_match'] * (len(small_eval_set) / len(test_validation))
f1 += res["f1"] * (len(small_eval_set) / len(test_validation))
start += validation_size
end += validation_size
print("F1 score: {}".format(f1))
print("Exact match: {}".format(exact_match))
with open(out, "a+") as file:
file.write("Model: {}, Question: {}, Size: {}".format(model_name, question, len(test_validation)))
file.write("\n")
file.write("F1 score: {}".format(f1))
file.write("\n")
file.write("Exact match: {}".format(exact_match))
file.write("\n")