|
from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, AutoModelForQuestionAnswering |
|
from transformers.modeling_outputs import ModelOutput |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
from tqdm import tqdm |
|
import evaluate |
|
import torch |
|
from dataclasses import dataclass |
|
from datasets import load_dataset, concatenate_datasets |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
import collections |
|
import re |
|
|
|
train = False |
|
test = True |
|
|
|
PEFT = False |
|
tf32 = True |
|
fp16 = True |
|
|
|
trained_model = "LUKE_squad_finetuned_qa_tf32" |
|
train_checkpoint = None |
|
squad_shift = False |
|
|
|
|
|
tokenizer_list = ["xlnet-base-cased"] |
|
model_list = ["botcon/XLNET_squad_finetuned_large"] |
|
question_list = ["who", "what", "where", "when", "which", "how", "whom", ".*"] |
|
|
|
base_tokenizer = "xlnet-base-cased" |
|
base_model = "studio-ousia/luke-base" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = tf32 |
|
torch.backends.cudnn.allow_tf32 = tf32 |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class LukeQuestionAnsweringModelOutput(ModelOutput): |
|
""" |
|
Outputs of question answering models. |
|
|
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. |
|
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Span-start scores (before SoftMax). |
|
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): |
|
Span-end scores (before SoftMax). |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of |
|
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each |
|
layer plus the initial entity embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
""" |
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
start_logits: torch.FloatTensor = None |
|
end_logits: torch.FloatTensor = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
class AugmentedLukeForQuestionAnswering(LukePreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.num_labels = config.num_labels |
|
|
|
self.luke = LukeModel(config, add_pooling_layer=False) |
|
|
|
''' |
|
Any improvement to the model are expected here. Additional features, anything... |
|
''' |
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) |
|
self.linear_dropout = nn.Dropout(0.1) |
|
|
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.FloatTensor] = None, |
|
entity_ids: Optional[torch.LongTensor] = None, |
|
entity_attention_mask: Optional[torch.FloatTensor] = None, |
|
entity_token_type_ids: Optional[torch.LongTensor] = None, |
|
entity_position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]: |
|
|
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.luke( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
entity_ids=entity_ids, |
|
entity_attention_mask=entity_attention_mask, |
|
entity_token_type_ids=entity_token_type_ids, |
|
entity_position_ids=entity_position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
) |
|
|
|
|
|
sequence_output = outputs.last_hidden_state |
|
sequence_output = self.linear_dropout(sequence_output) |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits : torch.Tensor = start_logits.squeeze(-1) |
|
end_logits = end_logits.squeeze(-1) |
|
|
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions.clamp_(0, ignored_index) |
|
end_positions.clamp_(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
total_loss, |
|
start_logits, |
|
end_logits, |
|
outputs.hidden_states, |
|
outputs.entity_hidden_states, |
|
outputs.attentions, |
|
] |
|
if v is not None |
|
) |
|
|
|
|
|
return LukeQuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
entity_hidden_states=outputs.entity_hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def get_squadshifts_training(): |
|
wiki = load_dataset("squadshifts", "new_wiki")["test"] |
|
nyt = load_dataset("squadshifts", "nyt")["test"] |
|
reddit = load_dataset("squadshifts", "reddit")["test"] |
|
raw_dataset = concatenate_datasets([wiki, nyt, reddit]) |
|
updated = raw_dataset.map(validation_to_train) |
|
return updated |
|
|
|
def validation_to_train(example): |
|
answers = example["answers"] |
|
answer_text = answers["text"] |
|
index_min = min(range(len(answer_text)), key=lambda x : len(answer_text.__getitem__(x))) |
|
answers["text"] = answers["text"][index_min:index_min+1] |
|
answers["answer_start"] = answers["answer_start"][index_min:index_min+1] |
|
return example |
|
|
|
|
|
def get_dataset(dataset, pattern): |
|
return dataset.filter(lambda x : bool(re.search(r"\b{}\b".format(pattern), x["question"], flags=re.IGNORECASE))) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer) |
|
|
|
|
|
max_length = 512 |
|
stride = 128 |
|
batch_size = 8 |
|
n_best = 20 |
|
max_answer_length = 30 |
|
metric = evaluate.load("squad") |
|
raw_datasets = load_dataset("squad") |
|
|
|
raw_train = raw_datasets["train"] |
|
raw_validation = raw_datasets["validation"] |
|
|
|
def compute_metrics(start_logits, end_logits, features, examples): |
|
example_to_features = collections.defaultdict(list) |
|
for idx, feature in enumerate(features): |
|
example_to_features[feature["example_id"]].append(idx) |
|
|
|
predicted_answers = [] |
|
for example in tqdm(examples): |
|
example_id = example["id"] |
|
context = example["context"] |
|
answers = [] |
|
|
|
|
|
for feature_index in example_to_features[example_id]: |
|
start_logit = start_logits[feature_index] |
|
end_logit = end_logits[feature_index] |
|
offsets = features[feature_index]["offset_mapping"] |
|
|
|
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist() |
|
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist() |
|
for start_index in start_indexes: |
|
for end_index in end_indexes: |
|
|
|
if offsets[start_index] is None or offsets[end_index] is None: |
|
continue |
|
|
|
if ( |
|
end_index < start_index |
|
or end_index - start_index + 1 > max_answer_length |
|
): |
|
continue |
|
|
|
answer = { |
|
"text": context[offsets[start_index][0] : offsets[end_index][1]], |
|
"logit_score": start_logit[start_index] + end_logit[end_index], |
|
} |
|
answers.append(answer) |
|
|
|
|
|
if len(answers) > 0: |
|
best_answer = max(answers, key=lambda x: x["logit_score"]) |
|
predicted_answers.append( |
|
{"id": example_id, "prediction_text": best_answer["text"]} |
|
) |
|
else: |
|
predicted_answers.append({"id": example_id, "prediction_text": ""}) |
|
|
|
theoretical_answers = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples] |
|
return metric.compute(predictions=predicted_answers, references=theoretical_answers) |
|
|
|
def preprocess_training_examples(examples): |
|
|
|
questions = [q.strip() for q in examples["question"]] |
|
inputs = tokenizer( |
|
questions, |
|
examples["context"], |
|
max_length=max_length, |
|
truncation="only_second", |
|
stride=stride, |
|
return_overflowing_tokens=True, |
|
return_offsets_mapping=True, |
|
padding="max_length", |
|
) |
|
|
|
offset_mapping = inputs.pop("offset_mapping") |
|
sample_map = inputs.pop("overflow_to_sample_mapping") |
|
answers = examples["answers"] |
|
start_positions = [] |
|
end_positions = [] |
|
|
|
for i, offset in enumerate(offset_mapping): |
|
sample_idx = sample_map[i] |
|
answer = answers[sample_idx] |
|
start_char = answer["answer_start"][0] |
|
end_char = answer["answer_start"][0] + len(answer["text"][0]) |
|
sequence_ids = inputs.sequence_ids(i) |
|
|
|
|
|
idx = 0 |
|
while sequence_ids[idx] != 1: |
|
idx += 1 |
|
context_start = idx |
|
while sequence_ids[idx] == 1: |
|
idx += 1 |
|
context_end = idx - 1 |
|
|
|
|
|
if offset[context_start][0] > start_char or offset[context_end][1] < end_char: |
|
start_positions.append(0) |
|
end_positions.append(0) |
|
else: |
|
|
|
idx = context_start |
|
while idx <= context_end and offset[idx][0] <= start_char: |
|
idx += 1 |
|
start_positions.append(idx - 1) |
|
|
|
idx = context_end |
|
while idx >= context_start and offset[idx][1] >= end_char: |
|
idx -= 1 |
|
end_positions.append(idx + 1) |
|
|
|
inputs["start_positions"] = start_positions |
|
inputs["end_positions"] = end_positions |
|
return inputs |
|
|
|
def preprocess_validation_examples(examples): |
|
questions = [q.strip() for q in examples["question"]] |
|
inputs = tokenizer( |
|
questions, |
|
examples["context"], |
|
max_length=max_length, |
|
truncation="only_second", |
|
stride=stride, |
|
return_overflowing_tokens=True, |
|
return_offsets_mapping=True, |
|
padding="max_length", |
|
) |
|
|
|
|
|
sample_map = inputs.pop("overflow_to_sample_mapping") |
|
example_ids = [] |
|
|
|
for i in range(len(inputs["input_ids"])): |
|
sample_idx = sample_map[i] |
|
example_ids.append(examples["id"][sample_idx]) |
|
|
|
sequence_ids = inputs.sequence_ids(i) |
|
offset = inputs["offset_mapping"][i] |
|
inputs["offset_mapping"][i] = [ |
|
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset) |
|
] |
|
|
|
inputs["example_id"] = example_ids |
|
return inputs |
|
|
|
if train: |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(base_model).to(device) |
|
model.train() |
|
|
|
if squad_shift: |
|
raw_train = get_squadshifts_training() |
|
|
|
train_dataset = raw_train.map( |
|
preprocess_training_examples, |
|
batched=True, |
|
remove_columns=raw_train.column_names, |
|
) |
|
|
|
validation_dataset = raw_validation.map( |
|
preprocess_validation_examples, |
|
batched=True, |
|
remove_columns=raw_validation.column_names, |
|
) |
|
|
|
|
|
if PEFT: |
|
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType |
|
|
|
|
|
import re |
|
pattern = r'\((\w+)\): Linear' |
|
linear_layers = re.findall(pattern, str(model.modules)) |
|
target_modules = list(set(linear_layers)) |
|
|
|
|
|
peft_config = LoraConfig( |
|
task_type=TaskType.QUESTION_ANS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=target_modules, bias='all' |
|
) |
|
|
|
model = get_peft_model(model, peft_config) |
|
model.print_trainable_parameters() |
|
|
|
trained_model += "_PEFT" |
|
|
|
|
|
|
|
args = TrainingArguments( |
|
trained_model, |
|
evaluation_strategy = "no", |
|
save_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=batch_size, |
|
per_device_eval_batch_size=batch_size, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
push_to_hub=True, |
|
fp16=fp16 |
|
) |
|
|
|
trainer = Trainer( |
|
model, |
|
args, |
|
train_dataset=train_dataset, |
|
eval_dataset=validation_dataset, |
|
data_collator=default_data_collator, |
|
tokenizer=tokenizer |
|
) |
|
|
|
trainer.train(train_checkpoint) |
|
|
|
if test: |
|
out = "out.txt" |
|
for j in range(1): |
|
|
|
|
|
|
|
|
|
for question in question_list: |
|
model_name = "botcon/XLNET_squad_finetuned_large" |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name).to(device) |
|
model.eval() |
|
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer) |
|
test_validation = get_dataset(raw_validation, question) |
|
exact_match = 0 |
|
f1 = 0 |
|
validation_size = 50 |
|
start = 0 |
|
end = validation_size |
|
|
|
with torch.no_grad(): |
|
while start < len(test_validation): |
|
small_eval_set = test_validation.select(range(start, min(end, len(test_validation)))) |
|
eval_set = small_eval_set.map( |
|
preprocess_validation_examples, |
|
batched=True, |
|
remove_columns=test_validation.column_names |
|
) |
|
eval_set_for_model = eval_set.remove_columns(["example_id", "offset_mapping"]) |
|
eval_set_for_model.set_format("torch") |
|
batch = {k: eval_set_for_model[k].to(device) for k in eval_set_for_model.column_names} |
|
outputs = model(**batch) |
|
start_logits = outputs.start_logits.cpu().numpy() |
|
end_logits = outputs.end_logits.cpu().numpy() |
|
res = compute_metrics(start_logits, end_logits, eval_set, small_eval_set) |
|
exact_match += res['exact_match'] * (len(small_eval_set) / len(test_validation)) |
|
f1 += res["f1"] * (len(small_eval_set) / len(test_validation)) |
|
start += validation_size |
|
end += validation_size |
|
|
|
print("F1 score: {}".format(f1)) |
|
print("Exact match: {}".format(exact_match)) |
|
with open(out, "a+") as file: |
|
file.write("Model: {}, Question: {}, Size: {}".format(model_name, question, len(test_validation))) |
|
file.write("\n") |
|
file.write("F1 score: {}".format(f1)) |
|
file.write("\n") |
|
file.write("Exact match: {}".format(exact_match)) |
|
file.write("\n") |