File size: 2,258 Bytes
361f4f3 1ffa09d 361f4f3 9103ead 361f4f3 c56c676 361f4f3 2e5002b 37daef4 361f4f3 2e5002b a825c09 d9b4b0b 361f4f3 57d37ce 632b9c9 57d37ce 632b9c9 57d37ce 14d40fa 346ca1e 14d40fa 346ca1e 14d40fa 37daef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language: ary
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Boumehdi
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
metrics:
- name: Test WER
type: wer
value: 49.68
---
# Wav2Vec2-Large-XLSR-53-Moroccan-Darija-V1
[othrif/wav2vec2-large-xlsr-moroccan](https://huggingface.co/othrif/wav2vec2-large-xlsr-moroccan) fine-tuned on 6 hours of labeled Darija Audios
I have also added 3 phonetic units to this model ڭ, ڤ and پ. For example: ڭال , ڤيديو , پودكاست
## Usage
The model can be used directly (without a language model) as follows:
```python
import librosa
import torch
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2Processor, TrainingArguments, Wav2Vec2FeatureExtractor, Trainer
tokenizer = Wav2Vec2CTCTokenizer("./vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
processor = Wav2Vec2Processor.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija-v1', tokenizer=tokenizer)
model=Wav2Vec2ForCTC.from_pretrained('boumehdi/wav2vec2-large-xlsr-moroccan-darija-v1')
# load the audio data (use your own wav file here!)
input_audio, sr = librosa.load('file.wav', sr=16000)
# tokenize
input_values = processor(input_audio, return_tensors="pt", padding=True).input_values
# retrieve logits
logits = model(input_values).logits
tokens=torch.argmax(logits, axis=-1)
# decode using n-gram
transcription = tokenizer.batch_decode(tokens)
# print the output
print(transcription)
```
Here's the output: ڭالت ليا هاد السيد هادا ما كاينش بحالو
## Evaluation
**Wer**: 49.68
**Training Loss**: 9.88
**Validation Loss**: 45.24
This high validation loss value is mainly due to the fact that Darija can be written in many ways.
## Future Work
Currently working on **wav2vec2-large-xlsr-moroccan-darija-v2** which will be available soon by adding more data (from 6hours to 12hours).
I am also working on audio data augmentation techniques (pitch shift, reberbation, additive augmentation.. ) to see if it is going to improve the **WER**.
|