bpatel644 commited on
Commit
2b74af9
·
1 Parent(s): 25f7ed5

Delete Tokenizer.py

Browse files
Files changed (1) hide show
  1. Tokenizer.py +0 -246
Tokenizer.py DELETED
@@ -1,246 +0,0 @@
1
- import os
2
- from shutil import copyfile
3
- from typing import Any, Dict, List, Optional, Tuple
4
-
5
- import sentencepiece as spm
6
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
- from transformers.utils import logging
8
-
9
- logger = logging.get_logger(__name__)
10
-
11
- VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
12
-
13
- PRETRAINED_VOCAB_FILES_MAP = {
14
- "vocab_file": {},
15
- "tokenizer_file": {},
16
- }
17
- PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
18
-
19
-
20
- class Tokenizer(PreTrainedTokenizer):
21
- """
22
- Construct a Yi tokenizer. Based on byte-level Byte-Pair-Encoding.
23
- Args:
24
- vocab_file (`str`):
25
- Path to the vocabulary file.
26
- """
27
-
28
- vocab_files_names = VOCAB_FILES_NAMES
29
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
30
- max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
31
- model_input_names = ["input_ids", "attention_mask"]
32
-
33
- def __init__(
34
- self,
35
- vocab_file,
36
- unk_token="<unk>",
37
- bos_token="<|startoftext|>",
38
- eos_token="<|endoftext|>",
39
- pad_token="<unk>",
40
- sp_model_kwargs: Optional[Dict[str, Any]] = None,
41
- add_bos_token=True,
42
- add_eos_token=False,
43
- clean_up_tokenization_spaces=False,
44
- **kwargs,
45
- ):
46
- self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
47
- bos_token = (
48
- AddedToken(bos_token, lstrip=False, rstrip=False)
49
- if isinstance(bos_token, str)
50
- else bos_token
51
- )
52
- eos_token = (
53
- AddedToken(eos_token, lstrip=False, rstrip=False)
54
- if isinstance(eos_token, str)
55
- else eos_token
56
- )
57
- unk_token = (
58
- AddedToken(unk_token, lstrip=False, rstrip=False)
59
- if isinstance(unk_token, str)
60
- else unk_token
61
- )
62
- pad_token = (
63
- AddedToken(pad_token, lstrip=False, rstrip=False)
64
- if isinstance(pad_token, str)
65
- else pad_token
66
- )
67
- self.vocab_file = vocab_file
68
- self.add_bos_token = add_bos_token
69
- self.add_eos_token = add_eos_token
70
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
71
- self.sp_model.Load(vocab_file)
72
- super().__init__(
73
- bos_token=bos_token,
74
- eos_token=eos_token,
75
- unk_token=unk_token,
76
- pad_token=pad_token,
77
- add_bos_token=add_bos_token,
78
- add_eos_token=add_eos_token,
79
- sp_model_kwargs=self.sp_model_kwargs,
80
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
81
- **kwargs,
82
- )
83
-
84
- def __getstate__(self):
85
- state = self.__dict__.copy()
86
- state["sp_model"] = None
87
- return state
88
-
89
- def __setstate__(self, d):
90
- self.__dict__ = d
91
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
92
- self.sp_model.Load(self.vocab_file)
93
-
94
- @property
95
- def vocab_size(self):
96
- """Returns vocab size"""
97
- return self.sp_model.get_piece_size()
98
-
99
- def get_vocab(self):
100
- """Returns vocab as a dict"""
101
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
- vocab.update(self.added_tokens_encoder)
103
- return vocab
104
-
105
- def _tokenize(self, text):
106
- """Returns a tokenized string."""
107
- return self.sp_model.encode(text, out_type=str)
108
-
109
- def _convert_token_to_id(self, token):
110
- """Converts a token (str) in an id using the vocab."""
111
- return self.sp_model.piece_to_id(token)
112
-
113
- def _convert_id_to_token(self, index):
114
- """Converts an index (integer) in a token (str) using the vocab."""
115
- token = self.sp_model.IdToPiece(index)
116
- return token
117
-
118
- def convert_tokens_to_string(self, tokens):
119
- """Converts a sequence of tokens (string) in a single string."""
120
- current_sub_tokens = []
121
- out_string = ""
122
- prev_is_special = False
123
- for i, token in enumerate(tokens):
124
- # make sure that special tokens are not decoded using sentencepiece model
125
- if token in self.all_special_tokens:
126
- if not prev_is_special and i != 0:
127
- out_string += " "
128
- out_string += self.sp_model.decode(current_sub_tokens) + token
129
- prev_is_special = True
130
- current_sub_tokens = []
131
- else:
132
- current_sub_tokens.append(token)
133
- prev_is_special = False
134
- out_string += self.sp_model.decode(current_sub_tokens)
135
- return out_string
136
-
137
- def save_vocabulary(
138
- self, save_directory, filename_prefix: Optional[str] = None
139
- ) -> Tuple[str]:
140
- """
141
- Save the vocabulary and special tokens file to a directory.
142
- Args:
143
- save_directory (`str`):
144
- The directory in which to save the vocabulary.
145
- Returns:
146
- `Tuple(str)`: Paths to the files saved.
147
- """
148
- if not os.path.isdir(save_directory):
149
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
150
- return
151
- out_vocab_file = os.path.join(
152
- save_directory,
153
- (filename_prefix + "-" if filename_prefix else "")
154
- + VOCAB_FILES_NAMES["vocab_file"],
155
- )
156
-
157
- if os.path.abspath(self.vocab_file) != os.path.abspath(
158
- out_vocab_file
159
- ) and os.path.isfile(self.vocab_file):
160
- copyfile(self.vocab_file, out_vocab_file)
161
- elif not os.path.isfile(self.vocab_file):
162
- with open(out_vocab_file, "wb") as fi:
163
- content_spiece_model = self.sp_model.serialized_model_proto()
164
- fi.write(content_spiece_model)
165
-
166
- return (out_vocab_file,)
167
-
168
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
169
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
170
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
171
-
172
- output = bos_token_id + token_ids_0 + eos_token_id
173
-
174
- if token_ids_1 is not None:
175
- output = output + bos_token_id + token_ids_1 + eos_token_id
176
-
177
- return output
178
-
179
- def get_special_tokens_mask(
180
- self,
181
- token_ids_0: List[int],
182
- token_ids_1: Optional[List[int]] = None,
183
- already_has_special_tokens: bool = False,
184
- ) -> List[int]:
185
- """
186
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
187
- special tokens using the tokenizer `prepare_for_model` method.
188
- Args:
189
- token_ids_0 (`List[int]`):
190
- List of IDs.
191
- token_ids_1 (`List[int]`, *optional*):
192
- Optional second list of IDs for sequence pairs.
193
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
194
- Whether or not the token list is already formatted with special tokens for the model.
195
- Returns:
196
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
197
- """
198
- if already_has_special_tokens:
199
- return super().get_special_tokens_mask(
200
- token_ids_0=token_ids_0,
201
- token_ids_1=token_ids_1,
202
- already_has_special_tokens=True,
203
- )
204
-
205
- bos_token_id = [1] if self.add_bos_token else []
206
- eos_token_id = [1] if self.add_eos_token else []
207
-
208
- if token_ids_1 is None:
209
- return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
210
- return (
211
- bos_token_id
212
- + ([0] * len(token_ids_0))
213
- + eos_token_id
214
- + bos_token_id
215
- + ([0] * len(token_ids_1))
216
- + eos_token_id
217
- )
218
-
219
- def create_token_type_ids_from_sequences(
220
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
221
- ) -> List[int]:
222
- """
223
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
224
- sequence pair mask has the following format:
225
- ```
226
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
227
- | first sequence | second sequence |
228
- ```
229
- if token_ids_1 is None, only returns the first portion of the mask (0s).
230
- Args:
231
- token_ids_0 (`List[int]`):
232
- List of ids.
233
- token_ids_1 (`List[int]`, *optional*):
234
- Optional second list of IDs for sequence pairs.
235
- Returns:
236
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
237
- """
238
- bos_token_id = [self.bos_token_id] if self.add_bos_token else []
239
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
240
-
241
- output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
242
-
243
- if token_ids_1 is not None:
244
- output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
245
-
246
- return output