--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Longformer_v5 results: [] --- # Longformer_v5 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7919 - Precision: 0.8516 - Recall: 0.8678 - F1: 0.6520 - Accuracy: 0.8259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7744 | 1.0 | 1012 | 0.5785 | 0.8375 | 0.8501 | 0.5798 | 0.8098 | | 0.5211 | 2.0 | 2024 | 0.5415 | 0.8434 | 0.8801 | 0.6251 | 0.8282 | | 0.3996 | 3.0 | 3036 | 0.5565 | 0.8500 | 0.8766 | 0.6303 | 0.8274 | | 0.2964 | 4.0 | 4048 | 0.6017 | 0.8617 | 0.8546 | 0.6415 | 0.8240 | | 0.2187 | 5.0 | 5060 | 0.6660 | 0.8485 | 0.8718 | 0.6431 | 0.8271 | | 0.1603 | 6.0 | 6072 | 0.7235 | 0.8493 | 0.8759 | 0.6544 | 0.8290 | | 0.1208 | 7.0 | 7084 | 0.7919 | 0.8516 | 0.8678 | 0.6520 | 0.8259 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1