File size: 4,866 Bytes
77b834f
9c40e33
d81c44f
0dfe864
847d7a6
4cd0c8b
59a7205
62c8653
847d7a6
4cd0c8b
 
62c8653
0853189
 
 
 
 
 
 
 
 
 
77b834f
4cd0c8b
df81e7c
4cd0c8b
6548019
 
45c5b9a
a9104cc
45c5b9a
c4fa083
a9104cc
6548019
19d8e30
c6c1af7
89dfb27
 
 
b826aee
6548019
84e9fff
c4fa083
6068ed6
84e9fff
3343d64
6068ed6
b826aee
89dfb27
 
 
a9edbbf
 
4691a82
 
 
 
e2d41dc
 
4f953af
e2d41dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59722dd
89dfb27
 
 
d8ef9b4
457eb12
 
1fabafe
 
6cacbb6
c4fa083
457eb12
92d634f
b416668
3819229
 
 
b416668
457eb12
4cd0c8b
 
 
 
b0fb67c
3819229
b0fb67c
 
324bfa5
4cd0c8b
324bfa5
aab1fdd
4cd0c8b
3819229
b0fb67c
 
324bfa5
4cd0c8b
 
 
b0fb67c
 
 
398a3d9
4cd0c8b
 
 
 
 
b0fb67c
4cd0c8b
 
b0fb67c
3819229
 
 
 
9c40e33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
license: other
license_name: bria-rmbg-1.4
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
pipeline_tag: image-to-image
tags:
- remove background
- background
- background-removal
- Pytorch
- vision
- legal liability

extra_gated_prompt: This model weights by BRIA AI can be obtained after a commercial license is agreed upon. Fill in the form below and we reach out to you.
extra_gated_fields:
  Name: text
  Company/Org name: text
  Org Type (Early/Growth Startup, Enterprise, Academy): text
  Role: text
  Country: text
  Email: text
  By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
---

# BRIA Background Removal v1.4 Model Card

RMBG v1.4 is our state-of-the-art background removal model, designed to effectively separate foreground from background in a range of
categories and image types. This model has been trained on a carefully selected dataset, which includes:
general stock images, e-commerce, gaming, and advertising content, making it suitable for commercial use cases powering enterprise content creation at scale. 
The accuracy, efficiency, and versatility currently rival leading open source models. 
It is ideal where content safety, legally licensed datasets, and bias mitigation are paramount. 

Developed by BRIA AI, RMBG v1.4 is available as an open-source model for non-commercial use. 

[CLICK HERE FOR A DEMO](https://huggingface.co/spaces/briaai/BRIA-RMBG-1.4)
![examples](t4.png)

### Model Description

- **Developed by:** [BRIA AI](https://bria.ai/)
- **Model type:** Background Removal 
- **License:** [bria-rmbg-1.4](https://bria.ai/bria-huggingface-model-license-agreement/)
  - The model is released under an open-source license for non-commercial use.
  - Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us) for more information. 

- **Model Description:** BRIA RMBG 1.4 is a saliency segmentation model trained exclusively on a professional-grade dataset.
- **BRIA:** Resources for more information: [BRIA AI](https://bria.ai/)



## Training data
Bria-RMBG model was trained with over 12,000 high-quality, high-resolution, manually labeled (pixel-wise accuracy), fully licensed images.
Our benchmark included balanced gender, balanced ethnicity, and people with different types of disabilities.
For clarity, we provide our data distribution according to different categories, demonstrating our model’s versatility.

### Distribution of images:

| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Objects only | 45.11% |
| People with objects/animals | 25.24% |
| People only | 17.35% |
| people/objects/animals with text | 8.52% |
| Text only | 2.52% |
| Animals only | 1.89% |

| Category | Distribution |
| -----------------------------------| -----------------------------------------:|
| Photorealistic | 87.70% |
| Non-Photorealistic | 12.30% |


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Non Solid Background | 52.05% |
| Solid Background | 47.95% 


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Single main foreground object | 51.42% |
| Multiple objects in the foreground | 48.58% |


## Qualitative Evaluation

![examples](results.png)


## Architecture

RMBG v1.4 is developed on the [IS-Net](https://github.com/xuebinqin/DIS) enhanced with our unique training scheme and proprietary dataset. 
These modifications significantly improve the model’s accuracy and effectiveness in diverse image-processing scenarios.

## Installation
```bash
git clone https://huggingface.co/briaai/RMBG-1.4
cd RMBG-1.4/
pip install -r requirements.txt
```

## Usage

```python
from skimage import io
import torch, os
from PIL import Image
from briarmbg import BriaRMBG
from utilities import preprocess_image, postprocess_image
from huggingface_hub import hf_hub_download

model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
im_path = f"{os.path.dirname(os.path.abspath(__file__))}/example_input.jpg"

net = BriaRMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.load_state_dict(torch.load(model_path, map_location=device))
net.to(device)
net.eval()    

# prepare input
model_input_size = [1024,1024]
orig_im = io.imread(im_path)
orig_im_size = orig_im.shape[0:2]
image = preprocess_image(orig_im, model_input_size).to(device)

# inference 
result=net(image)

# post process
result_image = postprocess_image(result[0][0], orig_im_size)

# save result
pil_im = Image.fromarray(result_image)
no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
orig_image = Image.open(im_path)
no_bg_image.paste(orig_image, mask=pil_im)
no_bg_image.save("example_image_no_bg.png")
```