File size: 4,165 Bytes
77b834f
9c40e33
0853189
 
 
4cd0c8b
59a7205
62c8653
 
4cd0c8b
 
62c8653
0853189
 
 
 
 
 
 
 
 
 
77b834f
4cd0c8b
df81e7c
4cd0c8b
59722dd
 
89dfb27
c6c1af7
89dfb27
 
 
b826aee
89dfb27
84e9fff
95deb26
 
84e9fff
95deb26
b826aee
89dfb27
 
 
59722dd
 
 
 
e2d41dc
 
4f953af
e2d41dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59722dd
 
89dfb27
 
 
d8ef9b4
457eb12
b826aee
457eb12
 
 
4cd0c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c40e33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: other
licence_name: bria-rmbg-1.4
license_link: https://bria.ai/bria-huggingface-model-license-agreement/

tags:
- remove background
- background
- background removal
- Pytorch
- vision
- legal liability

extra_gated_prompt: This model weights by BRIA AI can be obtained after a commercial license is agreed upon. Fill in the form below and we reach out to you.
extra_gated_fields:
  Name: text
  Company/Org name: text
  Org Type (Early/Growth Startup, Enterprise, Academy): text
  Role: text
  Country: text
  Email: text
  By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
---

# BRIA Background Removal v1.4 Model Card

100% automatically Background removal capability across all categories and image types that capture the variety of the world. 
Built and validated on a comprehensive dataset containing an equal distribution of general stock images, eComm, gaming and ads.

![examples](t4.png)

### Model Description

- **Developed by:** [BRIA AI](https://bria.ai/)
- **Model type:** Background removal image-to-image model
- **License:** [bria-rmbg-1.4](https://bria.ai/bria-huggingface-model-license-agreement/)
  - The model is open for non-commercial use.
  - Commercial use is subject to a commercial agreement with BRIA. [Contact Us](https://bria.ai/contact-us)

- **Model Description:** BRIA RMBG 1.4 is an image-to-image model trained exclusively on a professional-grade dataset.



## Training data
Bria-RMBG model was trained over 12000 high quality, high resolution, fully licensed images.
The training set as well as the validation benchmark if a holistic representation of the commercial world containing a distribution of general stock images, eComm, gaming and ads.

Distribution of images:
| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Objects only | 45.11% |
| People with objects/animals | 25.24% |
| People only | 17.35% |
| people/objects/animals with text | 8.52% |
| Text only | 2.52% |
| Animals only | 1.89% |

| Category | Distribution |
| -----------------------------------| -----------------------------------------:|
| Photorealistic | 87.70% |
| Non-Photorealistic | 12.30% |


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Non Solid Background | 52.05% |
| Solid Background | 47.95% 


| Category | Distribution |
| -----------------------------------| -----------------------------------:|
| Single main foreground object | 51.42% |
| Multiple objects in the foreground | 48.58% |

All images were manualy labeled pixel-wise accuratly. 

## Qualitative Evaluation

![examples](results.png)

- **Inference Time :** 1 sec on Nvidia A10 GPU



## Usage

```python
import os
import numpy as np
from skimage import io
from glob import glob
from tqdm import tqdm
import cv2
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from models import BriaRMBG

input_size=[1024,1024]
net=BriaRMBG()

model_path = "./model.pth"
im_path = "./example_image.jpg"
result_path = "."

if torch.cuda.is_available():
    net.load_state_dict(torch.load(model_path))
    net=net.cuda()
else:
    net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()    

# prepare input
im = io.imread(im_path)
if len(im.shape) < 3:
    im = im[:, :, np.newaxis]
im_size=im.shape[0:2]
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)
im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=input_size, mode='bilinear').type(torch.uint8)
image = torch.divide(im_tensor,255.0)
image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])

if torch.cuda.is_available():
    image=image.cuda()

# inference 
result=net(image)

# post process
result = torch.squeeze(F.interpolate(result[0][0], size=im_size, mode='bilinear') ,0)
ma = torch.max(result)
mi = torch.min(result)
result = (result-mi)/(ma-mi)

# save result
im_name=im_path.split('/')[-1].split('.')[0]
im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)
cv2.imwrite(os.path.join(result_path, im_name+".png"), im_array)
```