--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-eng results: [] --- # speaker-segmentation-fine-tuned-callhome-eng This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome eng dataset. It achieves the following results on the evaluation set: - Loss: 0.4823 - Der: 0.1830 - False Alarm: 0.0620 - Missed Detection: 0.0697 - Confusion: 0.0513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4474 | 1.0 | 181 | 0.4819 | 0.1951 | 0.0640 | 0.0729 | 0.0582 | | 0.403 | 2.0 | 362 | 0.4771 | 0.1875 | 0.0524 | 0.0789 | 0.0562 | | 0.389 | 3.0 | 543 | 0.4636 | 0.1827 | 0.0506 | 0.0782 | 0.0539 | | 0.3715 | 4.0 | 724 | 0.4553 | 0.1811 | 0.0547 | 0.0733 | 0.0531 | | 0.3722 | 5.0 | 905 | 0.4699 | 0.1833 | 0.0516 | 0.0769 | 0.0548 | | 0.3625 | 6.0 | 1086 | 0.4677 | 0.1831 | 0.0585 | 0.0714 | 0.0531 | | 0.351 | 7.0 | 1267 | 0.4729 | 0.1800 | 0.0532 | 0.0750 | 0.0518 | | 0.3405 | 8.0 | 1448 | 0.4707 | 0.1817 | 0.0550 | 0.0749 | 0.0518 | | 0.3378 | 9.0 | 1629 | 0.4654 | 0.1820 | 0.0575 | 0.0725 | 0.0519 | | 0.3312 | 10.0 | 1810 | 0.4745 | 0.1821 | 0.0566 | 0.0739 | 0.0516 | | 0.3283 | 11.0 | 1991 | 0.4768 | 0.1832 | 0.0618 | 0.0695 | 0.0520 | | 0.3225 | 12.0 | 2172 | 0.4872 | 0.1850 | 0.0647 | 0.0680 | 0.0523 | | 0.3205 | 13.0 | 2353 | 0.4840 | 0.1857 | 0.0628 | 0.0692 | 0.0537 | | 0.3129 | 14.0 | 2534 | 0.4782 | 0.1827 | 0.0644 | 0.0678 | 0.0505 | | 0.3145 | 15.0 | 2715 | 0.4798 | 0.1817 | 0.0597 | 0.0712 | 0.0507 | | 0.3109 | 16.0 | 2896 | 0.4803 | 0.1822 | 0.0631 | 0.0685 | 0.0506 | | 0.3086 | 17.0 | 3077 | 0.4813 | 0.1827 | 0.0622 | 0.0694 | 0.0511 | | 0.3095 | 18.0 | 3258 | 0.4813 | 0.1830 | 0.0618 | 0.0699 | 0.0513 | | 0.3109 | 19.0 | 3439 | 0.4823 | 0.1829 | 0.0620 | 0.0697 | 0.0512 | | 0.3115 | 20.0 | 3620 | 0.4823 | 0.1830 | 0.0620 | 0.0697 | 0.0513 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1