|
import os, yaml, pickle, shutil, tarfile, glob |
|
import cv2 |
|
import albumentations |
|
import PIL |
|
import numpy as np |
|
import torchvision.transforms.functional as TF |
|
from omegaconf import OmegaConf |
|
from functools import partial |
|
from PIL import Image |
|
from tqdm import tqdm |
|
from torch.utils.data import Dataset, Subset |
|
|
|
import taming.data.utils as tdu |
|
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve |
|
from taming.data.imagenet import ImagePaths |
|
|
|
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light |
|
|
|
|
|
def synset2idx(path_to_yaml="data/index_synset.yaml"): |
|
with open(path_to_yaml) as f: |
|
di2s = yaml.load(f) |
|
return dict((v,k) for k,v in di2s.items()) |
|
|
|
|
|
class ImageNetBase(Dataset): |
|
def __init__(self, config=None): |
|
self.config = config or OmegaConf.create() |
|
if not type(self.config)==dict: |
|
self.config = OmegaConf.to_container(self.config) |
|
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False) |
|
self.process_images = True |
|
self._prepare() |
|
self._prepare_synset_to_human() |
|
self._prepare_idx_to_synset() |
|
self._prepare_human_to_integer_label() |
|
self._load() |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, i): |
|
return self.data[i] |
|
|
|
def _prepare(self): |
|
raise NotImplementedError() |
|
|
|
def _filter_relpaths(self, relpaths): |
|
ignore = set([ |
|
"n06596364_9591.JPEG", |
|
]) |
|
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore] |
|
if "sub_indices" in self.config: |
|
indices = str_to_indices(self.config["sub_indices"]) |
|
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) |
|
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn) |
|
files = [] |
|
for rpath in relpaths: |
|
syn = rpath.split("/")[0] |
|
if syn in synsets: |
|
files.append(rpath) |
|
return files |
|
else: |
|
return relpaths |
|
|
|
def _prepare_synset_to_human(self): |
|
SIZE = 2655750 |
|
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1" |
|
self.human_dict = os.path.join(self.root, "synset_human.txt") |
|
if (not os.path.exists(self.human_dict) or |
|
not os.path.getsize(self.human_dict)==SIZE): |
|
download(URL, self.human_dict) |
|
|
|
def _prepare_idx_to_synset(self): |
|
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1" |
|
self.idx2syn = os.path.join(self.root, "index_synset.yaml") |
|
if (not os.path.exists(self.idx2syn)): |
|
download(URL, self.idx2syn) |
|
|
|
def _prepare_human_to_integer_label(self): |
|
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1" |
|
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt") |
|
if (not os.path.exists(self.human2integer)): |
|
download(URL, self.human2integer) |
|
with open(self.human2integer, "r") as f: |
|
lines = f.read().splitlines() |
|
assert len(lines) == 1000 |
|
self.human2integer_dict = dict() |
|
for line in lines: |
|
value, key = line.split(":") |
|
self.human2integer_dict[key] = int(value) |
|
|
|
def _load(self): |
|
with open(self.txt_filelist, "r") as f: |
|
self.relpaths = f.read().splitlines() |
|
l1 = len(self.relpaths) |
|
self.relpaths = self._filter_relpaths(self.relpaths) |
|
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths))) |
|
|
|
self.synsets = [p.split("/")[0] for p in self.relpaths] |
|
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths] |
|
|
|
unique_synsets = np.unique(self.synsets) |
|
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets)) |
|
if not self.keep_orig_class_label: |
|
self.class_labels = [class_dict[s] for s in self.synsets] |
|
else: |
|
self.class_labels = [self.synset2idx[s] for s in self.synsets] |
|
|
|
with open(self.human_dict, "r") as f: |
|
human_dict = f.read().splitlines() |
|
human_dict = dict(line.split(maxsplit=1) for line in human_dict) |
|
|
|
self.human_labels = [human_dict[s] for s in self.synsets] |
|
|
|
labels = { |
|
"relpath": np.array(self.relpaths), |
|
"synsets": np.array(self.synsets), |
|
"class_label": np.array(self.class_labels), |
|
"human_label": np.array(self.human_labels), |
|
} |
|
|
|
if self.process_images: |
|
self.size = retrieve(self.config, "size", default=256) |
|
self.data = ImagePaths(self.abspaths, |
|
labels=labels, |
|
size=self.size, |
|
random_crop=self.random_crop, |
|
) |
|
else: |
|
self.data = self.abspaths |
|
|
|
|
|
class ImageNetTrain(ImageNetBase): |
|
NAME = "ILSVRC2012_train" |
|
URL = "http://www.image-net.org/challenges/LSVRC/2012/" |
|
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2" |
|
FILES = [ |
|
"ILSVRC2012_img_train.tar", |
|
] |
|
SIZES = [ |
|
147897477120, |
|
] |
|
|
|
def __init__(self, process_images=True, data_root=None, **kwargs): |
|
self.process_images = process_images |
|
self.data_root = data_root |
|
super().__init__(**kwargs) |
|
|
|
def _prepare(self): |
|
if self.data_root: |
|
self.root = os.path.join(self.data_root, self.NAME) |
|
else: |
|
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) |
|
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) |
|
|
|
self.datadir = os.path.join(self.root, "data") |
|
self.txt_filelist = os.path.join(self.root, "filelist.txt") |
|
self.expected_length = 1281167 |
|
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop", |
|
default=True) |
|
if not tdu.is_prepared(self.root): |
|
|
|
print("Preparing dataset {} in {}".format(self.NAME, self.root)) |
|
|
|
datadir = self.datadir |
|
if not os.path.exists(datadir): |
|
path = os.path.join(self.root, self.FILES[0]) |
|
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: |
|
import academictorrents as at |
|
atpath = at.get(self.AT_HASH, datastore=self.root) |
|
assert atpath == path |
|
|
|
print("Extracting {} to {}".format(path, datadir)) |
|
os.makedirs(datadir, exist_ok=True) |
|
with tarfile.open(path, "r:") as tar: |
|
tar.extractall(path=datadir) |
|
|
|
print("Extracting sub-tars.") |
|
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar"))) |
|
for subpath in tqdm(subpaths): |
|
subdir = subpath[:-len(".tar")] |
|
os.makedirs(subdir, exist_ok=True) |
|
with tarfile.open(subpath, "r:") as tar: |
|
tar.extractall(path=subdir) |
|
|
|
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) |
|
filelist = [os.path.relpath(p, start=datadir) for p in filelist] |
|
filelist = sorted(filelist) |
|
filelist = "\n".join(filelist)+"\n" |
|
with open(self.txt_filelist, "w") as f: |
|
f.write(filelist) |
|
|
|
tdu.mark_prepared(self.root) |
|
|
|
|
|
class ImageNetValidation(ImageNetBase): |
|
NAME = "ILSVRC2012_validation" |
|
URL = "http://www.image-net.org/challenges/LSVRC/2012/" |
|
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5" |
|
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1" |
|
FILES = [ |
|
"ILSVRC2012_img_val.tar", |
|
"validation_synset.txt", |
|
] |
|
SIZES = [ |
|
6744924160, |
|
1950000, |
|
] |
|
|
|
def __init__(self, process_images=True, data_root=None, **kwargs): |
|
self.data_root = data_root |
|
self.process_images = process_images |
|
super().__init__(**kwargs) |
|
|
|
def _prepare(self): |
|
if self.data_root: |
|
self.root = os.path.join(self.data_root, self.NAME) |
|
else: |
|
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache")) |
|
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME) |
|
self.datadir = os.path.join(self.root, "data") |
|
self.txt_filelist = os.path.join(self.root, "filelist.txt") |
|
self.expected_length = 50000 |
|
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop", |
|
default=False) |
|
if not tdu.is_prepared(self.root): |
|
|
|
print("Preparing dataset {} in {}".format(self.NAME, self.root)) |
|
|
|
datadir = self.datadir |
|
if not os.path.exists(datadir): |
|
path = os.path.join(self.root, self.FILES[0]) |
|
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]: |
|
import academictorrents as at |
|
atpath = at.get(self.AT_HASH, datastore=self.root) |
|
assert atpath == path |
|
|
|
print("Extracting {} to {}".format(path, datadir)) |
|
os.makedirs(datadir, exist_ok=True) |
|
with tarfile.open(path, "r:") as tar: |
|
tar.extractall(path=datadir) |
|
|
|
vspath = os.path.join(self.root, self.FILES[1]) |
|
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]: |
|
download(self.VS_URL, vspath) |
|
|
|
with open(vspath, "r") as f: |
|
synset_dict = f.read().splitlines() |
|
synset_dict = dict(line.split() for line in synset_dict) |
|
|
|
print("Reorganizing into synset folders") |
|
synsets = np.unique(list(synset_dict.values())) |
|
for s in synsets: |
|
os.makedirs(os.path.join(datadir, s), exist_ok=True) |
|
for k, v in synset_dict.items(): |
|
src = os.path.join(datadir, k) |
|
dst = os.path.join(datadir, v) |
|
shutil.move(src, dst) |
|
|
|
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG")) |
|
filelist = [os.path.relpath(p, start=datadir) for p in filelist] |
|
filelist = sorted(filelist) |
|
filelist = "\n".join(filelist)+"\n" |
|
with open(self.txt_filelist, "w") as f: |
|
f.write(filelist) |
|
|
|
tdu.mark_prepared(self.root) |
|
|
|
|
|
|
|
class ImageNetSR(Dataset): |
|
def __init__(self, size=None, |
|
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1., |
|
random_crop=True): |
|
""" |
|
Imagenet Superresolution Dataloader |
|
Performs following ops in order: |
|
1. crops a crop of size s from image either as random or center crop |
|
2. resizes crop to size with cv2.area_interpolation |
|
3. degrades resized crop with degradation_fn |
|
|
|
:param size: resizing to size after cropping |
|
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light |
|
:param downscale_f: Low Resolution Downsample factor |
|
:param min_crop_f: determines crop size s, |
|
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f) |
|
:param max_crop_f: "" |
|
:param data_root: |
|
:param random_crop: |
|
""" |
|
self.base = self.get_base() |
|
assert size |
|
assert (size / downscale_f).is_integer() |
|
self.size = size |
|
self.LR_size = int(size / downscale_f) |
|
self.min_crop_f = min_crop_f |
|
self.max_crop_f = max_crop_f |
|
assert(max_crop_f <= 1.) |
|
self.center_crop = not random_crop |
|
|
|
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA) |
|
|
|
self.pil_interpolation = False |
|
|
|
if degradation == "bsrgan": |
|
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f) |
|
|
|
elif degradation == "bsrgan_light": |
|
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f) |
|
|
|
else: |
|
interpolation_fn = { |
|
"cv_nearest": cv2.INTER_NEAREST, |
|
"cv_bilinear": cv2.INTER_LINEAR, |
|
"cv_bicubic": cv2.INTER_CUBIC, |
|
"cv_area": cv2.INTER_AREA, |
|
"cv_lanczos": cv2.INTER_LANCZOS4, |
|
"pil_nearest": PIL.Image.NEAREST, |
|
"pil_bilinear": PIL.Image.BILINEAR, |
|
"pil_bicubic": PIL.Image.BICUBIC, |
|
"pil_box": PIL.Image.BOX, |
|
"pil_hamming": PIL.Image.HAMMING, |
|
"pil_lanczos": PIL.Image.LANCZOS, |
|
}[degradation] |
|
|
|
self.pil_interpolation = degradation.startswith("pil_") |
|
|
|
if self.pil_interpolation: |
|
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn) |
|
|
|
else: |
|
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size, |
|
interpolation=interpolation_fn) |
|
|
|
def __len__(self): |
|
return len(self.base) |
|
|
|
def __getitem__(self, i): |
|
example = self.base[i] |
|
image = Image.open(example["file_path_"]) |
|
|
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
image = np.array(image).astype(np.uint8) |
|
|
|
min_side_len = min(image.shape[:2]) |
|
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None) |
|
crop_side_len = int(crop_side_len) |
|
|
|
if self.center_crop: |
|
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len) |
|
|
|
else: |
|
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len) |
|
|
|
image = self.cropper(image=image)["image"] |
|
image = self.image_rescaler(image=image)["image"] |
|
|
|
if self.pil_interpolation: |
|
image_pil = PIL.Image.fromarray(image) |
|
LR_image = self.degradation_process(image_pil) |
|
LR_image = np.array(LR_image).astype(np.uint8) |
|
|
|
else: |
|
LR_image = self.degradation_process(image=image)["image"] |
|
|
|
example["image"] = (image/127.5 - 1.0).astype(np.float32) |
|
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32) |
|
|
|
return example |
|
|
|
|
|
class ImageNetSRTrain(ImageNetSR): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def get_base(self): |
|
with open("data/imagenet_train_hr_indices.p", "rb") as f: |
|
indices = pickle.load(f) |
|
dset = ImageNetTrain(process_images=False,) |
|
return Subset(dset, indices) |
|
|
|
|
|
class ImageNetSRValidation(ImageNetSR): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def get_base(self): |
|
with open("data/imagenet_val_hr_indices.p", "rb") as f: |
|
indices = pickle.load(f) |
|
dset = ImageNetValidation(process_images=False,) |
|
return Subset(dset, indices) |
|
|