bruel commited on
Commit
7d163ab
·
verified ·
1 Parent(s): b558e77

Model save

Browse files
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Open-R1-GRPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-1.5B-Open-R1-GRPO
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="bruel/Qwen2.5-1.5B-Open-R1-GRPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/unboxmagic/huggingface/runs/smvz4ow1)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 379.5353878517854,
4
+ "train_runtime": 232403.7931,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 0.312,
7
+ "train_steps_per_second": 0.003
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97efeaf4c66077e459963a977201234187bf76301ead3dd8e0224e0f26b514d5
3
+ size 1531449344
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
File without changes
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 379.5353878517854,
4
+ "train_runtime": 232403.7931,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 0.312,
7
+ "train_steps_per_second": 0.003
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2081 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9987438399845395,
5
+ "eval_steps": 100,
6
+ "global_step": 646,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 393.6643056869507,
13
+ "epoch": 0.007730215479756498,
14
+ "grad_norm": 0.8319699187669469,
15
+ "kl": 0.00013954639434814452,
16
+ "learning_rate": 1.5384615384615387e-06,
17
+ "loss": 0.0,
18
+ "reward": 0.7195449007675052,
19
+ "reward_std": 0.5224083874374628,
20
+ "rewards/accuracy_reward": 0.16517857974395156,
21
+ "rewards/cosine_scaled_reward": -0.09027656889520586,
22
+ "rewards/format_reward": 0.46517859138548373,
23
+ "rewards/reasoning_steps_reward": 0.17946429918520151,
24
+ "step": 5
25
+ },
26
+ {
27
+ "completion_length": 388.05269584655764,
28
+ "epoch": 0.015460430959512996,
29
+ "grad_norm": 0.8123763229790176,
30
+ "kl": 0.0022653818130493166,
31
+ "learning_rate": 3.0769230769230774e-06,
32
+ "loss": 0.0001,
33
+ "reward": 0.7006159001961351,
34
+ "reward_std": 0.5306106515228748,
35
+ "rewards/accuracy_reward": 0.1410714359022677,
36
+ "rewards/cosine_scaled_reward": -0.11307462062686682,
37
+ "rewards/format_reward": 0.5080357354134322,
38
+ "rewards/reasoning_steps_reward": 0.16458334433846175,
39
+ "step": 10
40
+ },
41
+ {
42
+ "completion_length": 248.5607237815857,
43
+ "epoch": 0.023190646439269495,
44
+ "grad_norm": 1.699419290702465,
45
+ "kl": 0.03936920166015625,
46
+ "learning_rate": 4.615384615384616e-06,
47
+ "loss": 0.0016,
48
+ "reward": 0.8049403864890337,
49
+ "reward_std": 0.40321367387659846,
50
+ "rewards/accuracy_reward": 0.09642857667058706,
51
+ "rewards/cosine_scaled_reward": -0.10696442169137299,
52
+ "rewards/format_reward": 0.7455357499420643,
53
+ "rewards/reasoning_steps_reward": 0.06994048110209405,
54
+ "step": 15
55
+ },
56
+ {
57
+ "completion_length": 233.43661785125732,
58
+ "epoch": 0.03092086191902599,
59
+ "grad_norm": 1.0224092602520027,
60
+ "kl": 0.0746673583984375,
61
+ "learning_rate": 6.153846153846155e-06,
62
+ "loss": 0.003,
63
+ "reward": 0.8915791682898998,
64
+ "reward_std": 0.3877835442312062,
65
+ "rewards/accuracy_reward": 0.10625000568106771,
66
+ "rewards/cosine_scaled_reward": -0.04800420138417394,
67
+ "rewards/format_reward": 0.7437500357627869,
68
+ "rewards/reasoning_steps_reward": 0.08958333982154727,
69
+ "step": 20
70
+ },
71
+ {
72
+ "completion_length": 212.74733037948607,
73
+ "epoch": 0.03865107739878249,
74
+ "grad_norm": 1.240709005575142,
75
+ "kl": 0.0882232666015625,
76
+ "learning_rate": 7.692307692307694e-06,
77
+ "loss": 0.0035,
78
+ "reward": 1.002081935852766,
79
+ "reward_std": 0.3706091455183923,
80
+ "rewards/accuracy_reward": 0.12589286351576448,
81
+ "rewards/cosine_scaled_reward": -0.004763351219298784,
82
+ "rewards/format_reward": 0.7625000335276126,
83
+ "rewards/reasoning_steps_reward": 0.11845238907262683,
84
+ "step": 25
85
+ },
86
+ {
87
+ "completion_length": 65.06071722507477,
88
+ "epoch": 0.04638129287853899,
89
+ "grad_norm": 1.981164938553927,
90
+ "kl": 0.3583251953125,
91
+ "learning_rate": 9.230769230769232e-06,
92
+ "loss": 0.0143,
93
+ "reward": 1.1063394784927367,
94
+ "reward_std": 0.1653201764522237,
95
+ "rewards/accuracy_reward": 0.057142860069870946,
96
+ "rewards/cosine_scaled_reward": 0.023006107861874625,
97
+ "rewards/format_reward": 0.9598214417695999,
98
+ "rewards/reasoning_steps_reward": 0.06636905297636986,
99
+ "step": 30
100
+ },
101
+ {
102
+ "completion_length": 68.25714633464813,
103
+ "epoch": 0.054111508358295486,
104
+ "grad_norm": 2.6378409932487905,
105
+ "kl": 0.6129638671875,
106
+ "learning_rate": 1.076923076923077e-05,
107
+ "loss": 0.0246,
108
+ "reward": 1.175253478437662,
109
+ "reward_std": 0.18643303209682927,
110
+ "rewards/accuracy_reward": 0.025000001210719346,
111
+ "rewards/cosine_scaled_reward": -0.025341810117242857,
112
+ "rewards/format_reward": 0.9607143014669418,
113
+ "rewards/reasoning_steps_reward": 0.214880966860801,
114
+ "step": 35
115
+ },
116
+ {
117
+ "completion_length": 57.43035991191864,
118
+ "epoch": 0.06184172383805198,
119
+ "grad_norm": 4.956506661704911,
120
+ "kl": 0.47823486328125,
121
+ "learning_rate": 1.230769230769231e-05,
122
+ "loss": 0.0191,
123
+ "reward": 1.2816980078816413,
124
+ "reward_std": 0.1065220304124523,
125
+ "rewards/accuracy_reward": 0.008035714644938708,
126
+ "rewards/cosine_scaled_reward": -0.02871871000970714,
127
+ "rewards/format_reward": 0.975000011920929,
128
+ "rewards/reasoning_steps_reward": 0.3273809777572751,
129
+ "step": 40
130
+ },
131
+ {
132
+ "completion_length": 61.206253266334535,
133
+ "epoch": 0.06957193931780849,
134
+ "grad_norm": 1.1434158564850665,
135
+ "kl": 0.69990234375,
136
+ "learning_rate": 1.3846153846153847e-05,
137
+ "loss": 0.028,
138
+ "reward": 1.4386275261640549,
139
+ "reward_std": 0.14483234668150544,
140
+ "rewards/accuracy_reward": 0.004464285913854837,
141
+ "rewards/cosine_scaled_reward": -0.028932074527256192,
142
+ "rewards/format_reward": 0.9660714432597161,
143
+ "rewards/reasoning_steps_reward": 0.4970238521695137,
144
+ "step": 45
145
+ },
146
+ {
147
+ "completion_length": 373.93662371635435,
148
+ "epoch": 0.07730215479756498,
149
+ "grad_norm": 0.7317925308360725,
150
+ "kl": 0.3951904296875,
151
+ "learning_rate": 1.5384615384615387e-05,
152
+ "loss": 0.0158,
153
+ "reward": 1.4827586993575097,
154
+ "reward_std": 0.3412967847660184,
155
+ "rewards/accuracy_reward": 0.0053571430966258046,
156
+ "rewards/cosine_scaled_reward": -0.17259852699935435,
157
+ "rewards/format_reward": 0.703571456298232,
158
+ "rewards/reasoning_steps_reward": 0.9464286357164383,
159
+ "step": 50
160
+ },
161
+ {
162
+ "completion_length": 95.80268287658691,
163
+ "epoch": 0.08503237027732148,
164
+ "grad_norm": 1.2231255930992933,
165
+ "kl": 0.584619140625,
166
+ "learning_rate": 1.6923076923076924e-05,
167
+ "loss": 0.0234,
168
+ "reward": 1.8429067522287368,
169
+ "reward_std": 0.13412819448858498,
170
+ "rewards/accuracy_reward": 0.008928571827709675,
171
+ "rewards/cosine_scaled_reward": -0.07792668255860917,
172
+ "rewards/format_reward": 0.9875000052154064,
173
+ "rewards/reasoning_steps_reward": 0.924404826760292,
174
+ "step": 55
175
+ },
176
+ {
177
+ "completion_length": 45.93393068313598,
178
+ "epoch": 0.09276258575707798,
179
+ "grad_norm": 1.2290196834793985,
180
+ "kl": 0.862744140625,
181
+ "learning_rate": 1.8461538461538465e-05,
182
+ "loss": 0.0345,
183
+ "reward": 1.8843340575695038,
184
+ "reward_std": 0.09844313520006835,
185
+ "rewards/accuracy_reward": 0.0026785715483129023,
186
+ "rewards/cosine_scaled_reward": -0.02995176060067024,
187
+ "rewards/format_reward": 1.0,
188
+ "rewards/reasoning_steps_reward": 0.9116072118282318,
189
+ "step": 60
190
+ },
191
+ {
192
+ "completion_length": 41.71875171661377,
193
+ "epoch": 0.10049280123683448,
194
+ "grad_norm": 4.86495762622666,
195
+ "kl": 1.1458984375,
196
+ "learning_rate": 2e-05,
197
+ "loss": 0.0458,
198
+ "reward": 1.9429006069898604,
199
+ "reward_std": 0.09017826845229138,
200
+ "rewards/accuracy_reward": 0.008035714644938708,
201
+ "rewards/cosine_scaled_reward": -0.015730434632860123,
202
+ "rewards/format_reward": 0.9919642895460129,
203
+ "rewards/reasoning_steps_reward": 0.9586309991776943,
204
+ "step": 65
205
+ },
206
+ {
207
+ "completion_length": 33.29643015861511,
208
+ "epoch": 0.10822301671659097,
209
+ "grad_norm": 1.1702023462933628,
210
+ "kl": 1.3630859375,
211
+ "learning_rate": 1.999634547413886e-05,
212
+ "loss": 0.0545,
213
+ "reward": 1.919108833372593,
214
+ "reward_std": 0.09037394287151983,
215
+ "rewards/accuracy_reward": 0.0008928571827709675,
216
+ "rewards/cosine_scaled_reward": -0.009165053069591523,
217
+ "rewards/format_reward": 0.9910714328289032,
218
+ "rewards/reasoning_steps_reward": 0.9363095819950104,
219
+ "step": 70
220
+ },
221
+ {
222
+ "completion_length": 28.31250133514404,
223
+ "epoch": 0.11595323219634747,
224
+ "grad_norm": 0.723298648050913,
225
+ "kl": 1.65380859375,
226
+ "learning_rate": 1.9985384567667278e-05,
227
+ "loss": 0.0662,
228
+ "reward": 1.971532365679741,
229
+ "reward_std": 0.03292575376344757,
230
+ "rewards/accuracy_reward": 0.0,
231
+ "rewards/cosine_scaled_reward": -0.005551052745431662,
232
+ "rewards/format_reward": 0.9955357164144516,
233
+ "rewards/reasoning_steps_reward": 0.9815476641058922,
234
+ "step": 75
235
+ },
236
+ {
237
+ "completion_length": 34.47589445114136,
238
+ "epoch": 0.12368344767610397,
239
+ "grad_norm": 1.0683163847397983,
240
+ "kl": 2.5994140625,
241
+ "learning_rate": 1.9967125291968495e-05,
242
+ "loss": 0.104,
243
+ "reward": 1.9481785863637924,
244
+ "reward_std": 0.06038723666652004,
245
+ "rewards/accuracy_reward": 0.0,
246
+ "rewards/cosine_scaled_reward": -0.008369124261662364,
247
+ "rewards/format_reward": 0.9767857253551483,
248
+ "rewards/reasoning_steps_reward": 0.9797619417309761,
249
+ "step": 80
250
+ },
251
+ {
252
+ "completion_length": 65.65803842544555,
253
+ "epoch": 0.13141366315586048,
254
+ "grad_norm": 3.8166154325669464,
255
+ "kl": 2.8294921875,
256
+ "learning_rate": 1.9941580992841562e-05,
257
+ "loss": 0.1132,
258
+ "reward": 1.883014965057373,
259
+ "reward_std": 0.1193199211884803,
260
+ "rewards/accuracy_reward": 0.0,
261
+ "rewards/cosine_scaled_reward": -0.020556552152265796,
262
+ "rewards/format_reward": 0.9205357365310192,
263
+ "rewards/reasoning_steps_reward": 0.9830357439815998,
264
+ "step": 85
265
+ },
266
+ {
267
+ "completion_length": 106.13304002285004,
268
+ "epoch": 0.13914387863561697,
269
+ "grad_norm": 2.4782906565877263,
270
+ "kl": 2.51455078125,
271
+ "learning_rate": 1.990877034074683e-05,
272
+ "loss": 0.1006,
273
+ "reward": 1.8108871415257455,
274
+ "reward_std": 0.22878142609918087,
275
+ "rewards/accuracy_reward": 0.0,
276
+ "rewards/cosine_scaled_reward": -0.04179151313728653,
277
+ "rewards/format_reward": 0.891964317113161,
278
+ "rewards/reasoning_steps_reward": 0.9607143364846706,
279
+ "step": 90
280
+ },
281
+ {
282
+ "completion_length": 24.216965198516846,
283
+ "epoch": 0.14687409411537347,
284
+ "grad_norm": 16.3288297356888,
285
+ "kl": 3.2685546875,
286
+ "learning_rate": 1.9868717317159617e-05,
287
+ "loss": 0.1308,
288
+ "reward": 1.846986098587513,
289
+ "reward_std": 0.10216094429056284,
290
+ "rewards/accuracy_reward": 0.0,
291
+ "rewards/cosine_scaled_reward": -0.007180654056719504,
292
+ "rewards/format_reward": 0.8803571516647934,
293
+ "rewards/reasoning_steps_reward": 0.9738095529377461,
294
+ "step": 95
295
+ },
296
+ {
297
+ "completion_length": 19.997322106361388,
298
+ "epoch": 0.15460430959512997,
299
+ "grad_norm": 0.6680377475774779,
300
+ "kl": 3.801171875,
301
+ "learning_rate": 1.9821451197042028e-05,
302
+ "loss": 0.152,
303
+ "reward": 1.79707273542881,
304
+ "reward_std": 0.13152264674754405,
305
+ "rewards/accuracy_reward": 0.0,
306
+ "rewards/cosine_scaled_reward": -0.007391588386963121,
307
+ "rewards/format_reward": 0.9080357346683741,
308
+ "rewards/reasoning_steps_reward": 0.89642863124609,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 0.15460430959512997,
313
+ "eval_completion_length": 19.953274488449097,
314
+ "eval_kl": 3.958984375,
315
+ "eval_loss": 0.1587880253791809,
316
+ "eval_reward": 1.967043936252594,
317
+ "eval_reward_std": 0.04172060855364634,
318
+ "eval_rewards/accuracy_reward": 0.0,
319
+ "eval_rewards/cosine_scaled_reward": -0.004682280734414235,
320
+ "eval_rewards/format_reward": 0.977678582072258,
321
+ "eval_rewards/reasoning_steps_reward": 0.9940476343035698,
322
+ "eval_runtime": 88.5436,
323
+ "eval_samples_per_second": 1.118,
324
+ "eval_steps_per_second": 0.045,
325
+ "step": 100
326
+ },
327
+ {
328
+ "completion_length": 36.03392972946167,
329
+ "epoch": 0.16233452507488647,
330
+ "grad_norm": 1.0457278656163418,
331
+ "kl": 4.2841796875,
332
+ "learning_rate": 1.9767006527445728e-05,
333
+ "loss": 0.1714,
334
+ "reward": 1.8444557696580888,
335
+ "reward_std": 0.17751287204523578,
336
+ "rewards/accuracy_reward": 0.0,
337
+ "rewards/cosine_scaled_reward": -0.022806165312067604,
338
+ "rewards/format_reward": 0.8982143141329288,
339
+ "rewards/reasoning_steps_reward": 0.9690476536750794,
340
+ "step": 105
341
+ },
342
+ {
343
+ "completion_length": 19.386607813835145,
344
+ "epoch": 0.17006474055464296,
345
+ "grad_norm": 3.975769496074024,
346
+ "kl": 4.3798828125,
347
+ "learning_rate": 1.9705423102261324e-05,
348
+ "loss": 0.1752,
349
+ "reward": 1.848235307633877,
350
+ "reward_std": 0.1854919496602861,
351
+ "rewards/accuracy_reward": 0.0,
352
+ "rewards/cosine_scaled_reward": -0.003848067167564295,
353
+ "rewards/format_reward": 0.9071428917348385,
354
+ "rewards/reasoning_steps_reward": 0.9449405193328857,
355
+ "step": 110
356
+ },
357
+ {
358
+ "completion_length": 39.196430110931395,
359
+ "epoch": 0.17779495603439946,
360
+ "grad_norm": 629.8751115115074,
361
+ "kl": 1221448.98359375,
362
+ "learning_rate": 1.9636745933132807e-05,
363
+ "loss": 49017.025,
364
+ "reward": 1.7226364403963088,
365
+ "reward_std": 0.26729307810414865,
366
+ "rewards/accuracy_reward": 0.0,
367
+ "rewards/cosine_scaled_reward": -0.015161267505027354,
368
+ "rewards/format_reward": 0.8187500331550837,
369
+ "rewards/reasoning_steps_reward": 0.919047673791647,
370
+ "step": 115
371
+ },
372
+ {
373
+ "completion_length": 69.21607434749603,
374
+ "epoch": 0.18552517151415596,
375
+ "grad_norm": 1.2688648377958267,
376
+ "kl": 4.220703125,
377
+ "learning_rate": 1.956102521655831e-05,
378
+ "loss": 0.1688,
379
+ "reward": 1.8117250353097916,
380
+ "reward_std": 0.23047553618447408,
381
+ "rewards/accuracy_reward": 0.0,
382
+ "rewards/cosine_scaled_reward": -0.02309649466187693,
383
+ "rewards/format_reward": 0.8973214633762836,
384
+ "rewards/reasoning_steps_reward": 0.9375000439584256,
385
+ "step": 120
386
+ },
387
+ {
388
+ "completion_length": 60.73125305175781,
389
+ "epoch": 0.19325538699391245,
390
+ "grad_norm": 0.2129319651640345,
391
+ "kl": 4.1267578125,
392
+ "learning_rate": 1.9478316297201218e-05,
393
+ "loss": 0.1651,
394
+ "reward": 1.9027385860681534,
395
+ "reward_std": 0.13217100637344856,
396
+ "rewards/accuracy_reward": 0.0,
397
+ "rewards/cosine_scaled_reward": -0.021666298160562293,
398
+ "rewards/format_reward": 0.949107164144516,
399
+ "rewards/reasoning_steps_reward": 0.9752976492047309,
400
+ "step": 125
401
+ },
402
+ {
403
+ "completion_length": 82.8946475982666,
404
+ "epoch": 0.20098560247366895,
405
+ "grad_norm": 0.4842709355139345,
406
+ "kl": 4.0013671875,
407
+ "learning_rate": 1.9388679627438486e-05,
408
+ "loss": 0.1601,
409
+ "reward": 1.8676396518945695,
410
+ "reward_std": 0.16894543728906228,
411
+ "rewards/accuracy_reward": 0.0,
412
+ "rewards/cosine_scaled_reward": -0.02968190241372213,
413
+ "rewards/format_reward": 0.9276786014437676,
414
+ "rewards/reasoning_steps_reward": 0.9696428924798965,
415
+ "step": 130
416
+ },
417
+ {
418
+ "completion_length": 56.571431851387025,
419
+ "epoch": 0.20871581795342545,
420
+ "grad_norm": 0.3307371522282908,
421
+ "kl": 4.093359375,
422
+ "learning_rate": 1.9292180723175656e-05,
423
+ "loss": 0.1637,
424
+ "reward": 1.9362090989947318,
425
+ "reward_std": 0.0856858525637108,
426
+ "rewards/accuracy_reward": 0.0,
427
+ "rewards/cosine_scaled_reward": -0.007243422014289536,
428
+ "rewards/format_reward": 0.9598214469850064,
429
+ "rewards/reasoning_steps_reward": 0.9836309775710106,
430
+ "step": 135
431
+ },
432
+ {
433
+ "completion_length": 53.09821681976318,
434
+ "epoch": 0.21644603343318194,
435
+ "grad_norm": 0.20158892085634514,
436
+ "kl": 4.10859375,
437
+ "learning_rate": 1.9188890115960967e-05,
438
+ "loss": 0.1643,
439
+ "reward": 1.9483717486262322,
440
+ "reward_std": 0.05921500856607054,
441
+ "rewards/accuracy_reward": 0.0,
442
+ "rewards/cosine_scaled_reward": -0.004902200927608647,
443
+ "rewards/format_reward": 0.965178582072258,
444
+ "rewards/reasoning_steps_reward": 0.9880952581763267,
445
+ "step": 140
446
+ },
447
+ {
448
+ "completion_length": 64.77232451438904,
449
+ "epoch": 0.22417624891293844,
450
+ "grad_norm": 0.03644543056993346,
451
+ "kl": 4.0466796875,
452
+ "learning_rate": 1.9078883301433488e-05,
453
+ "loss": 0.1618,
454
+ "reward": 1.9349053993821144,
455
+ "reward_std": 0.07295309662978297,
456
+ "rewards/accuracy_reward": 0.0,
457
+ "rewards/cosine_scaled_reward": -0.004678068493376486,
458
+ "rewards/format_reward": 0.9535714440047741,
459
+ "rewards/reasoning_steps_reward": 0.9860119305551052,
460
+ "step": 145
461
+ },
462
+ {
463
+ "completion_length": 38.74285895824433,
464
+ "epoch": 0.23190646439269494,
465
+ "grad_norm": 0.0659210905213367,
466
+ "kl": 4.1435546875,
467
+ "learning_rate": 1.8962240684142923e-05,
468
+ "loss": 0.1657,
469
+ "reward": 1.9672578498721123,
470
+ "reward_std": 0.04177629348894243,
471
+ "rewards/accuracy_reward": 0.0,
472
+ "rewards/cosine_scaled_reward": -0.0032780089415609835,
473
+ "rewards/format_reward": 0.980357152223587,
474
+ "rewards/reasoning_steps_reward": 0.9901785835623741,
475
+ "step": 150
476
+ },
477
+ {
478
+ "completion_length": 66.56161048412324,
479
+ "epoch": 0.23963667987245144,
480
+ "grad_norm": 0.1437599738341925,
481
+ "kl": 3.9880859375,
482
+ "learning_rate": 1.883904751878156e-05,
483
+ "loss": 0.1595,
484
+ "reward": 1.9231001794338227,
485
+ "reward_std": 0.09157901574684502,
486
+ "rewards/accuracy_reward": 0.0,
487
+ "rewards/cosine_scaled_reward": -0.0033880500152008606,
488
+ "rewards/format_reward": 0.9526785887777806,
489
+ "rewards/reasoning_steps_reward": 0.9738095432519913,
490
+ "step": 155
491
+ },
492
+ {
493
+ "completion_length": 59.35446717739105,
494
+ "epoch": 0.24736689535220793,
495
+ "grad_norm": 0.09815925409063538,
496
+ "kl": 4.066796875,
497
+ "learning_rate": 1.8709393847871146e-05,
498
+ "loss": 0.1627,
499
+ "reward": 1.8962562099099158,
500
+ "reward_std": 0.0967012564579818,
501
+ "rewards/accuracy_reward": 0.0,
502
+ "rewards/cosine_scaled_reward": -0.0034463008109014482,
503
+ "rewards/format_reward": 0.924107164889574,
504
+ "rewards/reasoning_steps_reward": 0.975595261156559,
505
+ "step": 160
506
+ },
507
+ {
508
+ "completion_length": 67.4553611755371,
509
+ "epoch": 0.25509711083196446,
510
+ "grad_norm": 0.057252157927286634,
511
+ "kl": 4.0279296875,
512
+ "learning_rate": 1.857337443595034e-05,
513
+ "loss": 0.1611,
514
+ "reward": 1.9181514993309974,
515
+ "reward_std": 0.10700749011431299,
516
+ "rewards/accuracy_reward": 0.0,
517
+ "rewards/cosine_scaled_reward": -0.0035748237452935426,
518
+ "rewards/format_reward": 0.9517857328057289,
519
+ "rewards/reasoning_steps_reward": 0.9699404999613762,
520
+ "step": 165
521
+ },
522
+ {
523
+ "completion_length": 91.7125051498413,
524
+ "epoch": 0.26282732631172095,
525
+ "grad_norm": 445.82999475155805,
526
+ "kl": 6.0328125,
527
+ "learning_rate": 1.8431088700310846e-05,
528
+ "loss": 0.2412,
529
+ "reward": 1.879951538145542,
530
+ "reward_std": 0.15761058254630597,
531
+ "rewards/accuracy_reward": 0.0,
532
+ "rewards/cosine_scaled_reward": -0.0039771679730620235,
533
+ "rewards/format_reward": 0.9258928872644901,
534
+ "rewards/reasoning_steps_reward": 0.9580357454717159,
535
+ "step": 170
536
+ },
537
+ {
538
+ "completion_length": 152.7116146326065,
539
+ "epoch": 0.27055754179147745,
540
+ "grad_norm": 0.025658109413280724,
541
+ "kl": 3.7509765625,
542
+ "learning_rate": 1.8282640638332773e-05,
543
+ "loss": 0.15,
544
+ "reward": 1.828264494240284,
545
+ "reward_std": 0.19012156879272196,
546
+ "rewards/accuracy_reward": 0.0,
547
+ "rewards/cosine_scaled_reward": -0.004176116726011969,
548
+ "rewards/format_reward": 0.8651785988360643,
549
+ "rewards/reasoning_steps_reward": 0.9672619320452214,
550
+ "step": 175
551
+ },
552
+ {
553
+ "completion_length": 181.5080426454544,
554
+ "epoch": 0.27828775727123395,
555
+ "grad_norm": 0.3807030611089835,
556
+ "kl": 3.526416015625,
557
+ "learning_rate": 1.8128138751472432e-05,
558
+ "loss": 0.141,
559
+ "reward": 1.7915376737713813,
560
+ "reward_std": 0.1342850628308952,
561
+ "rewards/accuracy_reward": 0.0,
562
+ "rewards/cosine_scaled_reward": -0.005783874096232466,
563
+ "rewards/format_reward": 0.8160714489407838,
564
+ "rewards/reasoning_steps_reward": 0.9812500163912773,
565
+ "step": 180
566
+ },
567
+ {
568
+ "completion_length": 49.52053849697113,
569
+ "epoch": 0.28601797275099045,
570
+ "grad_norm": 0.051073057360027686,
571
+ "kl": 4.1109375,
572
+ "learning_rate": 1.7967695965958044e-05,
573
+ "loss": 0.1644,
574
+ "reward": 1.9462698236107827,
575
+ "reward_std": 0.06717885590007881,
576
+ "rewards/accuracy_reward": 0.0,
577
+ "rewards/cosine_scaled_reward": -0.003432691577472724,
578
+ "rewards/format_reward": 0.9696428716182709,
579
+ "rewards/reasoning_steps_reward": 0.9800595372915268,
580
+ "step": 185
581
+ },
582
+ {
583
+ "completion_length": 92.98125462532043,
584
+ "epoch": 0.29374818823074694,
585
+ "grad_norm": 0.08491282273318096,
586
+ "kl": 3.8732421875,
587
+ "learning_rate": 1.780142955025139e-05,
588
+ "loss": 0.1549,
589
+ "reward": 1.8725923761725425,
590
+ "reward_std": 0.14104052223704003,
591
+ "rewards/accuracy_reward": 0.0,
592
+ "rewards/cosine_scaled_reward": -0.004193474692874588,
593
+ "rewards/format_reward": 0.9258928783237934,
594
+ "rewards/reasoning_steps_reward": 0.9508928813040256,
595
+ "step": 190
596
+ },
597
+ {
598
+ "completion_length": 53.98839597702026,
599
+ "epoch": 0.30147840371050344,
600
+ "grad_norm": 0.0407502209798921,
601
+ "kl": 4.1095703125,
602
+ "learning_rate": 1.7629461029335683e-05,
603
+ "loss": 0.1644,
604
+ "reward": 1.9376063704490663,
605
+ "reward_std": 0.07948707955421241,
606
+ "rewards/accuracy_reward": 0.0,
607
+ "rewards/cosine_scaled_reward": -0.003465201653307304,
608
+ "rewards/format_reward": 0.9642857313156128,
609
+ "rewards/reasoning_steps_reward": 0.9767857275903225,
610
+ "step": 195
611
+ },
612
+ {
613
+ "completion_length": 76.24018263816833,
614
+ "epoch": 0.30920861919025994,
615
+ "grad_norm": 0.04711777773542715,
616
+ "kl": 4.0279296875,
617
+ "learning_rate": 1.745191609589231e-05,
618
+ "loss": 0.1612,
619
+ "reward": 1.896301306784153,
620
+ "reward_std": 0.1302720103650472,
621
+ "rewards/accuracy_reward": 0.0,
622
+ "rewards/cosine_scaled_reward": -0.0048892945284023884,
623
+ "rewards/format_reward": 0.9383928827941418,
624
+ "rewards/reasoning_steps_reward": 0.9627976477146148,
625
+ "step": 200
626
+ },
627
+ {
628
+ "epoch": 0.30920861919025994,
629
+ "eval_completion_length": 62.13958692550659,
630
+ "eval_kl": 3.982421875,
631
+ "eval_loss": 0.15937010943889618,
632
+ "eval_reward": 1.9047856628894806,
633
+ "eval_reward_std": 0.12965827994048595,
634
+ "eval_rewards/accuracy_reward": 0.0,
635
+ "eval_rewards/cosine_scaled_reward": -0.007416868465952575,
636
+ "eval_rewards/format_reward": 0.9419643133878708,
637
+ "eval_rewards/reasoning_steps_reward": 0.9702381640672684,
638
+ "eval_runtime": 130.8866,
639
+ "eval_samples_per_second": 0.756,
640
+ "eval_steps_per_second": 0.031,
641
+ "step": 200
642
+ },
643
+ {
644
+ "completion_length": 30.83035817146301,
645
+ "epoch": 0.31693883467001643,
646
+ "grad_norm": 0.30874335671632164,
647
+ "kl": 4.1349609375,
648
+ "learning_rate": 1.7268924518431437e-05,
649
+ "loss": 0.1654,
650
+ "reward": 1.9143808513879776,
651
+ "reward_std": 0.1070815003528196,
652
+ "rewards/accuracy_reward": 0.0,
653
+ "rewards/cosine_scaled_reward": -0.008238333073677495,
654
+ "rewards/format_reward": 0.9491071663796902,
655
+ "rewards/reasoning_steps_reward": 0.9735119335353375,
656
+ "step": 205
657
+ },
658
+ {
659
+ "completion_length": 33.57767968177795,
660
+ "epoch": 0.32466905014977293,
661
+ "grad_norm": 1.4283379016888456,
662
+ "kl": 4.1873046875,
663
+ "learning_rate": 1.7080620046443503e-05,
664
+ "loss": 0.1674,
665
+ "reward": 1.9376077562570573,
666
+ "reward_std": 0.08286752559746446,
667
+ "rewards/accuracy_reward": 0.0,
668
+ "rewards/cosine_scaled_reward": -0.009118573818705044,
669
+ "rewards/format_reward": 0.9651785872876644,
670
+ "rewards/reasoning_steps_reward": 0.9815476432442665,
671
+ "step": 210
672
+ },
673
+ {
674
+ "completion_length": 84.65982589721679,
675
+ "epoch": 0.33239926562952943,
676
+ "grad_norm": 0.17126527752625184,
677
+ "kl": 3.955859375,
678
+ "learning_rate": 1.6887140312641036e-05,
679
+ "loss": 0.1582,
680
+ "reward": 1.8850552409887313,
681
+ "reward_std": 0.1453381786996033,
682
+ "rewards/accuracy_reward": 0.0,
683
+ "rewards/cosine_scaled_reward": -0.021194879824179225,
684
+ "rewards/format_reward": 0.9214286006987095,
685
+ "rewards/reasoning_steps_reward": 0.9848214447498321,
686
+ "step": 215
687
+ },
688
+ {
689
+ "completion_length": 43.63214511871338,
690
+ "epoch": 0.3401294811092859,
691
+ "grad_norm": 0.17340162500849332,
692
+ "kl": 4.155078125,
693
+ "learning_rate": 1.6688626732362192e-05,
694
+ "loss": 0.1662,
695
+ "reward": 1.947451178729534,
696
+ "reward_std": 0.06978715559945385,
697
+ "rewards/accuracy_reward": 0.0,
698
+ "rewards/cosine_scaled_reward": -0.015048965471214615,
699
+ "rewards/format_reward": 0.9732142984867096,
700
+ "rewards/reasoning_steps_reward": 0.9892857283353805,
701
+ "step": 220
702
+ },
703
+ {
704
+ "completion_length": 101.56250622272492,
705
+ "epoch": 0.3478596965890424,
706
+ "grad_norm": 3.0284434140101624,
707
+ "kl": 3.828515625,
708
+ "learning_rate": 1.6485224400209557e-05,
709
+ "loss": 0.1532,
710
+ "reward": 1.8568125352263452,
711
+ "reward_std": 0.15324103019194127,
712
+ "rewards/accuracy_reward": 0.0,
713
+ "rewards/cosine_scaled_reward": -0.04348521199135576,
714
+ "rewards/format_reward": 0.9151785984635353,
715
+ "rewards/reasoning_steps_reward": 0.985119067877531,
716
+ "step": 225
717
+ },
718
+ {
719
+ "completion_length": 72.90893268585205,
720
+ "epoch": 0.3555899120687989,
721
+ "grad_norm": 0.1007758395372248,
722
+ "kl": 4.01953125,
723
+ "learning_rate": 1.6277081983999742e-05,
724
+ "loss": 0.1607,
725
+ "reward": 1.90594839155674,
726
+ "reward_std": 0.12096411035238361,
727
+ "rewards/accuracy_reward": 0.0,
728
+ "rewards/cosine_scaled_reward": -0.029468410287518055,
729
+ "rewards/format_reward": 0.9455357372760773,
730
+ "rewards/reasoning_steps_reward": 0.9898809589445591,
731
+ "step": 230
732
+ },
733
+ {
734
+ "completion_length": 79.20536160469055,
735
+ "epoch": 0.3633201275485554,
736
+ "grad_norm": 1.5503652714803593,
737
+ "kl": 3.966015625,
738
+ "learning_rate": 1.6064351616101318e-05,
739
+ "loss": 0.1587,
740
+ "reward": 1.8908424541354178,
741
+ "reward_std": 0.1385169033126772,
742
+ "rewards/accuracy_reward": 0.0,
743
+ "rewards/cosine_scaled_reward": -0.03266958048625383,
744
+ "rewards/format_reward": 0.9392857372760772,
745
+ "rewards/reasoning_steps_reward": 0.984226206690073,
746
+ "step": 235
747
+ },
748
+ {
749
+ "completion_length": 58.220539116859435,
750
+ "epoch": 0.3710503430283119,
751
+ "grad_norm": 0.6541256672880773,
752
+ "kl": 4.5427734375,
753
+ "learning_rate": 1.5847188782240473e-05,
754
+ "loss": 0.1817,
755
+ "reward": 1.938517163693905,
756
+ "reward_std": 0.07940695661046675,
757
+ "rewards/accuracy_reward": 0.0,
758
+ "rewards/cosine_scaled_reward": -0.012971065321471542,
759
+ "rewards/format_reward": 0.958035732805729,
760
+ "rewards/reasoning_steps_reward": 0.9934523917734623,
761
+ "step": 240
762
+ },
763
+ {
764
+ "completion_length": 86.35982661247253,
765
+ "epoch": 0.3787805585080684,
766
+ "grad_norm": 0.1809364354222118,
767
+ "kl": 4.1990234375,
768
+ "learning_rate": 1.562575220785569e-05,
769
+ "loss": 0.168,
770
+ "reward": 1.9029038920998573,
771
+ "reward_std": 0.1221888413362194,
772
+ "rewards/accuracy_reward": 0.0,
773
+ "rewards/cosine_scaled_reward": -0.016143867559731007,
774
+ "rewards/format_reward": 0.9330357424914837,
775
+ "rewards/reasoning_steps_reward": 0.9860119186341763,
776
+ "step": 245
777
+ },
778
+ {
779
+ "completion_length": 78.21786177158356,
780
+ "epoch": 0.3865107739878249,
781
+ "grad_norm": 0.3531746901376527,
782
+ "kl": 4.165234375,
783
+ "learning_rate": 1.5400203742084508e-05,
784
+ "loss": 0.1666,
785
+ "reward": 1.909020183980465,
786
+ "reward_std": 0.11898586064601205,
787
+ "rewards/accuracy_reward": 0.0,
788
+ "rewards/cosine_scaled_reward": -0.006158514012349769,
789
+ "rewards/format_reward": 0.9392857395112515,
790
+ "rewards/reasoning_steps_reward": 0.9758928813040256,
791
+ "step": 250
792
+ },
793
+ {
794
+ "completion_length": 67.57500426769256,
795
+ "epoch": 0.3942409894675814,
796
+ "grad_norm": 0.8061477992341036,
797
+ "kl": 4.11875,
798
+ "learning_rate": 1.5170708239467143e-05,
799
+ "loss": 0.1647,
800
+ "reward": 1.9224899157881736,
801
+ "reward_std": 0.10508770456108323,
802
+ "rewards/accuracy_reward": 0.0,
803
+ "rewards/cosine_scaled_reward": -0.009653077411348932,
804
+ "rewards/format_reward": 0.9473214529454708,
805
+ "rewards/reasoning_steps_reward": 0.9848214507102966,
806
+ "step": 255
807
+ },
808
+ {
809
+ "completion_length": 78.22857594490051,
810
+ "epoch": 0.4019712049473379,
811
+ "grad_norm": 4.411813587166956,
812
+ "kl": 4.2771484375,
813
+ "learning_rate": 1.4937433439453465e-05,
814
+ "loss": 0.1711,
815
+ "reward": 1.9104647740721703,
816
+ "reward_std": 0.1049793604788988,
817
+ "rewards/accuracy_reward": 0.0,
818
+ "rewards/cosine_scaled_reward": -0.021975849731825293,
819
+ "rewards/format_reward": 0.9410714536905289,
820
+ "rewards/reasoning_steps_reward": 0.9913690604269505,
821
+ "step": 260
822
+ },
823
+ {
824
+ "completion_length": 69.1669682264328,
825
+ "epoch": 0.4097014204270944,
826
+ "grad_norm": 0.48352144768621647,
827
+ "kl": 4.066015625,
828
+ "learning_rate": 1.4700549843801359e-05,
829
+ "loss": 0.1627,
830
+ "reward": 1.9152694940567017,
831
+ "reward_std": 0.10864624861775382,
832
+ "rewards/accuracy_reward": 0.0,
833
+ "rewards/cosine_scaled_reward": -0.022528255853103474,
834
+ "rewards/format_reward": 0.946428594738245,
835
+ "rewards/reasoning_steps_reward": 0.9913690611720085,
836
+ "step": 265
837
+ },
838
+ {
839
+ "completion_length": 37.12946565151215,
840
+ "epoch": 0.4174316359068509,
841
+ "grad_norm": 0.6714538930597738,
842
+ "kl": 4.706640625,
843
+ "learning_rate": 1.4460230591956097e-05,
844
+ "loss": 0.1883,
845
+ "reward": 1.9362671867012977,
846
+ "reward_std": 0.08168737509336096,
847
+ "rewards/accuracy_reward": 0.0,
848
+ "rewards/cosine_scaled_reward": -0.015518663177499548,
849
+ "rewards/format_reward": 0.9785714387893677,
850
+ "rewards/reasoning_steps_reward": 0.9732143096625805,
851
+ "step": 270
852
+ },
853
+ {
854
+ "completion_length": 52.492859625816344,
855
+ "epoch": 0.4251618513866074,
856
+ "grad_norm": 0.9245446719505419,
857
+ "kl": 4.1919921875,
858
+ "learning_rate": 1.421665133450184e-05,
859
+ "loss": 0.1676,
860
+ "reward": 1.9015057906508446,
861
+ "reward_std": 0.13137552942173442,
862
+ "rewards/accuracy_reward": 0.0,
863
+ "rewards/cosine_scaled_reward": -0.016946710253250785,
864
+ "rewards/format_reward": 0.946428594738245,
865
+ "rewards/reasoning_steps_reward": 0.9720238372683525,
866
+ "step": 275
867
+ },
868
+ {
869
+ "completion_length": 69.02589702606201,
870
+ "epoch": 0.4328920668663639,
871
+ "grad_norm": 0.11042447450412597,
872
+ "kl": 4.1,
873
+ "learning_rate": 1.3969990104777712e-05,
874
+ "loss": 0.164,
875
+ "reward": 1.9225183099508285,
876
+ "reward_std": 0.10247833729500826,
877
+ "rewards/accuracy_reward": 0.0,
878
+ "rewards/cosine_scaled_reward": -0.0063508788269246,
879
+ "rewards/format_reward": 0.9500000223517417,
880
+ "rewards/reasoning_steps_reward": 0.9788690708577633,
881
+ "step": 280
882
+ },
883
+ {
884
+ "completion_length": 71.41964704990387,
885
+ "epoch": 0.4406222823461204,
886
+ "grad_norm": 0.16895486430636023,
887
+ "kl": 4.07265625,
888
+ "learning_rate": 1.3720427188752306e-05,
889
+ "loss": 0.1629,
890
+ "reward": 1.9211889013648034,
891
+ "reward_std": 0.1069276062933909,
892
+ "rewards/accuracy_reward": 0.0,
893
+ "rewards/cosine_scaled_reward": -0.004406464856583625,
894
+ "rewards/format_reward": 0.9482143066823483,
895
+ "rewards/reasoning_steps_reward": 0.977380970865488,
896
+ "step": 285
897
+ },
898
+ {
899
+ "completion_length": 73.2026825428009,
900
+ "epoch": 0.4483524978258769,
901
+ "grad_norm": 0.23089713625880126,
902
+ "kl": 4.0236328125,
903
+ "learning_rate": 1.3468144993251735e-05,
904
+ "loss": 0.1609,
905
+ "reward": 1.9197445258498191,
906
+ "reward_std": 0.08582717737808707,
907
+ "rewards/accuracy_reward": 0.0,
908
+ "rewards/cosine_scaled_reward": -0.006446088643861004,
909
+ "rewards/format_reward": 0.945535734295845,
910
+ "rewards/reasoning_steps_reward": 0.9806547850370407,
911
+ "step": 290
912
+ },
913
+ {
914
+ "completion_length": 54.97232456207276,
915
+ "epoch": 0.4560827133056334,
916
+ "grad_norm": 0.3314704351486173,
917
+ "kl": 4.11015625,
918
+ "learning_rate": 1.3213327912637563e-05,
919
+ "loss": 0.1644,
920
+ "reward": 1.9451483145356179,
921
+ "reward_std": 0.068802025315199,
922
+ "rewards/accuracy_reward": 0.0,
923
+ "rewards/cosine_scaled_reward": -0.004256584955146536,
924
+ "rewards/format_reward": 0.9669643014669418,
925
+ "rewards/reasoning_steps_reward": 0.9824404947459697,
926
+ "step": 295
927
+ },
928
+ {
929
+ "completion_length": 89.13750543594361,
930
+ "epoch": 0.4638129287853899,
931
+ "grad_norm": 0.056025297442606876,
932
+ "kl": 3.9078125,
933
+ "learning_rate": 1.295616219403197e-05,
934
+ "loss": 0.1563,
935
+ "reward": 1.8981666922569276,
936
+ "reward_std": 0.13097392180061435,
937
+ "rewards/accuracy_reward": 0.0,
938
+ "rewards/cosine_scaled_reward": -0.008976291766157374,
939
+ "rewards/format_reward": 0.935714314877987,
940
+ "rewards/reasoning_steps_reward": 0.9714286036789417,
941
+ "step": 300
942
+ },
943
+ {
944
+ "epoch": 0.4638129287853899,
945
+ "eval_completion_length": 39.84375238418579,
946
+ "eval_kl": 4.07421875,
947
+ "eval_loss": 0.16346079111099243,
948
+ "eval_reward": 1.960254266858101,
949
+ "eval_reward_std": 0.051680851727724075,
950
+ "eval_rewards/accuracy_reward": 0.0,
951
+ "eval_rewards/cosine_scaled_reward": -0.007007778622210026,
952
+ "eval_rewards/format_reward": 0.977678582072258,
953
+ "eval_rewards/reasoning_steps_reward": 0.9895833656191826,
954
+ "eval_runtime": 115.8419,
955
+ "eval_samples_per_second": 0.855,
956
+ "eval_steps_per_second": 0.035,
957
+ "step": 300
958
+ },
959
+ {
960
+ "completion_length": 76.06429018974305,
961
+ "epoch": 0.4715431442651464,
962
+ "grad_norm": 0.18209581705265776,
963
+ "kl": 3.9677734375,
964
+ "learning_rate": 1.2696835801188816e-05,
965
+ "loss": 0.1587,
966
+ "reward": 1.9158331274986267,
967
+ "reward_std": 0.10005336800240912,
968
+ "rewards/accuracy_reward": 0.0,
969
+ "rewards/cosine_scaled_reward": -0.007678911578841508,
970
+ "rewards/format_reward": 0.9464285925030709,
971
+ "rewards/reasoning_steps_reward": 0.9770833596587181,
972
+ "step": 305
973
+ },
974
+ {
975
+ "completion_length": 67.11250400543213,
976
+ "epoch": 0.47927335974490287,
977
+ "grad_norm": 0.10256530306756913,
978
+ "kl": 4.0390625,
979
+ "learning_rate": 1.2435538277109919e-05,
980
+ "loss": 0.1616,
981
+ "reward": 1.9289911210536956,
982
+ "reward_std": 0.09589594877152194,
983
+ "rewards/accuracy_reward": 0.0,
984
+ "rewards/cosine_scaled_reward": -0.004639970138669014,
985
+ "rewards/format_reward": 0.9544643066823483,
986
+ "rewards/reasoning_steps_reward": 0.9791666835546493,
987
+ "step": 310
988
+ },
989
+ {
990
+ "completion_length": 74.25000467300416,
991
+ "epoch": 0.48700357522465937,
992
+ "grad_norm": 0.22469716748320895,
993
+ "kl": 4.0345703125,
994
+ "learning_rate": 1.2172460605507126e-05,
995
+ "loss": 0.1613,
996
+ "reward": 1.9088378116488456,
997
+ "reward_std": 0.12017987889821598,
998
+ "rewards/accuracy_reward": 0.0,
999
+ "rewards/cosine_scaled_reward": -0.003959942577057518,
1000
+ "rewards/format_reward": 0.9455357387661933,
1001
+ "rewards/reasoning_steps_reward": 0.9672619320452214,
1002
+ "step": 315
1003
+ },
1004
+ {
1005
+ "completion_length": 73.52054042816162,
1006
+ "epoch": 0.49473379070441587,
1007
+ "grad_norm": 0.055833624142444874,
1008
+ "kl": 4.0427734375,
1009
+ "learning_rate": 1.19077950712113e-05,
1010
+ "loss": 0.1617,
1011
+ "reward": 1.9088953778147697,
1012
+ "reward_std": 0.11588089512188163,
1013
+ "rewards/accuracy_reward": 0.0,
1014
+ "rewards/cosine_scaled_reward": -0.0039023776946123688,
1015
+ "rewards/format_reward": 0.9446428827941418,
1016
+ "rewards/reasoning_steps_reward": 0.968154788017273,
1017
+ "step": 320
1018
+ },
1019
+ {
1020
+ "completion_length": 70.25625467300415,
1021
+ "epoch": 0.5024640061841724,
1022
+ "grad_norm": 0.052235556184819606,
1023
+ "kl": 4.0248046875,
1024
+ "learning_rate": 1.1641735119630373e-05,
1025
+ "loss": 0.1609,
1026
+ "reward": 1.9149396985769271,
1027
+ "reward_std": 0.10732133641477049,
1028
+ "rewards/accuracy_reward": 0.0,
1029
+ "rewards/cosine_scaled_reward": -0.0038104403211036697,
1030
+ "rewards/format_reward": 0.9482143104076386,
1031
+ "rewards/reasoning_steps_reward": 0.9705357439815998,
1032
+ "step": 325
1033
+ },
1034
+ {
1035
+ "completion_length": 87.53929159641265,
1036
+ "epoch": 0.5101942216639289,
1037
+ "grad_norm": 0.06219274350103104,
1038
+ "kl": 3.944921875,
1039
+ "learning_rate": 1.137447521535908e-05,
1040
+ "loss": 0.1578,
1041
+ "reward": 1.885709960758686,
1042
+ "reward_std": 0.15287861328179134,
1043
+ "rewards/accuracy_reward": 0.0,
1044
+ "rewards/cosine_scaled_reward": -0.00417111199349165,
1045
+ "rewards/format_reward": 0.9312500312924386,
1046
+ "rewards/reasoning_steps_reward": 0.9586309857666493,
1047
+ "step": 330
1048
+ },
1049
+ {
1050
+ "completion_length": 63.86786105632782,
1051
+ "epoch": 0.5179244371436854,
1052
+ "grad_norm": 0.08929289186123827,
1053
+ "kl": 4.05546875,
1054
+ "learning_rate": 1.110621070004378e-05,
1055
+ "loss": 0.1622,
1056
+ "reward": 1.9251599743962289,
1057
+ "reward_std": 0.10131168051884742,
1058
+ "rewards/accuracy_reward": 0.0,
1059
+ "rewards/cosine_scaled_reward": -0.0034115967486286537,
1060
+ "rewards/format_reward": 0.955357163399458,
1061
+ "rewards/reasoning_steps_reward": 0.973214303702116,
1062
+ "step": 335
1063
+ },
1064
+ {
1065
+ "completion_length": 59.61786041259766,
1066
+ "epoch": 0.5256546526234419,
1067
+ "grad_norm": 0.09420380111856261,
1068
+ "kl": 4.08125,
1069
+ "learning_rate": 1.0837137649606241e-05,
1070
+ "loss": 0.1633,
1071
+ "reward": 1.9315883651375771,
1072
+ "reward_std": 0.0922205568291247,
1073
+ "rewards/accuracy_reward": 0.0,
1074
+ "rewards/cosine_scaled_reward": -0.0038284392998320983,
1075
+ "rewards/format_reward": 0.9589285895228385,
1076
+ "rewards/reasoning_steps_reward": 0.9764881134033203,
1077
+ "step": 340
1078
+ },
1079
+ {
1080
+ "completion_length": 80.26875534057618,
1081
+ "epoch": 0.5333848681031984,
1082
+ "grad_norm": 0.06973853747292577,
1083
+ "kl": 3.965625,
1084
+ "learning_rate": 1.0567452730930743e-05,
1085
+ "loss": 0.1585,
1086
+ "reward": 1.9035059094429017,
1087
+ "reward_std": 0.12083175969310105,
1088
+ "rewards/accuracy_reward": 0.0,
1089
+ "rewards/cosine_scaled_reward": -0.0048275615088641645,
1090
+ "rewards/format_reward": 0.9392857410013675,
1091
+ "rewards/reasoning_steps_reward": 0.9690476469695568,
1092
+ "step": 345
1093
+ },
1094
+ {
1095
+ "completion_length": 86.70536255836487,
1096
+ "epoch": 0.5411150835829549,
1097
+ "grad_norm": 0.2670010274286229,
1098
+ "kl": 14.13515625,
1099
+ "learning_rate": 1.0297353058119209e-05,
1100
+ "loss": 0.5658,
1101
+ "reward": 1.8832309633493423,
1102
+ "reward_std": 0.14878732510696863,
1103
+ "rewards/accuracy_reward": 0.0,
1104
+ "rewards/cosine_scaled_reward": -0.004269177743117325,
1105
+ "rewards/format_reward": 0.9303571738302707,
1106
+ "rewards/reasoning_steps_reward": 0.9571428880095482,
1107
+ "step": 350
1108
+ },
1109
+ {
1110
+ "completion_length": 66.56428985595703,
1111
+ "epoch": 0.5488452990627114,
1112
+ "grad_norm": 0.5662585781110105,
1113
+ "kl": 4.0787109375,
1114
+ "learning_rate": 1.0027036048419514e-05,
1115
+ "loss": 0.1631,
1116
+ "reward": 1.920632439851761,
1117
+ "reward_std": 0.09926460331845419,
1118
+ "rewards/accuracy_reward": 0.0,
1119
+ "rewards/cosine_scaled_reward": -0.003772465680958703,
1120
+ "rewards/format_reward": 0.9526785925030709,
1121
+ "rewards/reasoning_steps_reward": 0.9717262141406536,
1122
+ "step": 355
1123
+ },
1124
+ {
1125
+ "completion_length": 105.22679147720336,
1126
+ "epoch": 0.5565755145424679,
1127
+ "grad_norm": 0.16159590077584135,
1128
+ "kl": 3.834765625,
1129
+ "learning_rate": 9.756699277932196e-06,
1130
+ "loss": 0.1534,
1131
+ "reward": 1.856449380517006,
1132
+ "reward_std": 0.1816349770885836,
1133
+ "rewards/accuracy_reward": 0.0,
1134
+ "rewards/cosine_scaled_reward": -0.003669783708755858,
1135
+ "rewards/format_reward": 0.9133928887546062,
1136
+ "rewards/reasoning_steps_reward": 0.9467262342572212,
1137
+ "step": 360
1138
+ },
1139
+ {
1140
+ "completion_length": 61.28750357627869,
1141
+ "epoch": 0.5643057300222244,
1142
+ "grad_norm": 0.09838211954717037,
1143
+ "kl": 4.0859375,
1144
+ "learning_rate": 9.486540337201046e-06,
1145
+ "loss": 0.1635,
1146
+ "reward": 1.9208381652832032,
1147
+ "reward_std": 0.10742362968286442,
1148
+ "rewards/accuracy_reward": 0.0,
1149
+ "rewards/cosine_scaled_reward": -0.003864350024377927,
1150
+ "rewards/format_reward": 0.9535714499652386,
1151
+ "rewards/reasoning_steps_reward": 0.9711309716105461,
1152
+ "step": 365
1153
+ },
1154
+ {
1155
+ "completion_length": 40.5357162475586,
1156
+ "epoch": 0.5720359455019809,
1157
+ "grad_norm": 0.045030859854867156,
1158
+ "kl": 4.1826171875,
1159
+ "learning_rate": 9.216756686793163e-06,
1160
+ "loss": 0.1673,
1161
+ "reward": 1.9622542053461074,
1162
+ "reward_std": 0.04885252295061946,
1163
+ "rewards/accuracy_reward": 0.0,
1164
+ "rewards/cosine_scaled_reward": -0.0035197534918552263,
1165
+ "rewards/format_reward": 0.9785714387893677,
1166
+ "rewards/reasoning_steps_reward": 0.9872023954987525,
1167
+ "step": 370
1168
+ },
1169
+ {
1170
+ "completion_length": 51.31071715354919,
1171
+ "epoch": 0.5797661609817374,
1172
+ "grad_norm": 0.05451944691861018,
1173
+ "kl": 4.1115234375,
1174
+ "learning_rate": 8.94754551297402e-06,
1175
+ "loss": 0.1645,
1176
+ "reward": 1.946009913086891,
1177
+ "reward_std": 0.07182540869818013,
1178
+ "rewards/accuracy_reward": 0.0,
1179
+ "rewards/cosine_scaled_reward": -0.0033949891163501888,
1180
+ "rewards/format_reward": 0.9678571581840515,
1181
+ "rewards/reasoning_steps_reward": 0.9815476380288601,
1182
+ "step": 375
1183
+ },
1184
+ {
1185
+ "completion_length": 131.2000051498413,
1186
+ "epoch": 0.5874963764614939,
1187
+ "grad_norm": 6.7166440282552555,
1188
+ "kl": 3.77578125,
1189
+ "learning_rate": 8.67910358358298e-06,
1190
+ "loss": 0.151,
1191
+ "reward": 1.844117023050785,
1192
+ "reward_std": 0.1535771109163761,
1193
+ "rewards/accuracy_reward": 0.0,
1194
+ "rewards/cosine_scaled_reward": -0.0035021472489461304,
1195
+ "rewards/format_reward": 0.8883928790688514,
1196
+ "rewards/reasoning_steps_reward": 0.9592262215912342,
1197
+ "step": 380
1198
+ },
1199
+ {
1200
+ "completion_length": 70.14732570648194,
1201
+ "epoch": 0.5952265919412504,
1202
+ "grad_norm": 0.05964035031954431,
1203
+ "kl": 4.0572265625,
1204
+ "learning_rate": 8.411627104214675e-06,
1205
+ "loss": 0.1623,
1206
+ "reward": 1.9135051429271699,
1207
+ "reward_std": 0.1051442735389287,
1208
+ "rewards/accuracy_reward": 0.0,
1209
+ "rewards/cosine_scaled_reward": -0.0034592857031384484,
1210
+ "rewards/format_reward": 0.9491071656346322,
1211
+ "rewards/reasoning_steps_reward": 0.9678571671247482,
1212
+ "step": 385
1213
+ },
1214
+ {
1215
+ "completion_length": 71.67768251895905,
1216
+ "epoch": 0.6029568074210069,
1217
+ "grad_norm": 0.07095713474628179,
1218
+ "kl": 4.0458984375,
1219
+ "learning_rate": 8.145311574811325e-06,
1220
+ "loss": 0.1618,
1221
+ "reward": 1.9104698538780212,
1222
+ "reward_std": 0.11787946913391352,
1223
+ "rewards/accuracy_reward": 0.0,
1224
+ "rewards/cosine_scaled_reward": -0.0038160031515872108,
1225
+ "rewards/format_reward": 0.9473214507102966,
1226
+ "rewards/reasoning_steps_reward": 0.9669643051922321,
1227
+ "step": 390
1228
+ },
1229
+ {
1230
+ "completion_length": 59.12500314712524,
1231
+ "epoch": 0.6106870229007634,
1232
+ "grad_norm": 0.22475776321486607,
1233
+ "kl": 4.0669921875,
1234
+ "learning_rate": 7.880351646770824e-06,
1235
+ "loss": 0.1626,
1236
+ "reward": 1.9262871831655501,
1237
+ "reward_std": 0.09550657907720961,
1238
+ "rewards/accuracy_reward": 0.0,
1239
+ "rewards/cosine_scaled_reward": -0.00407009502814617,
1240
+ "rewards/format_reward": 0.958035732805729,
1241
+ "rewards/reasoning_steps_reward": 0.9723214544355869,
1242
+ "step": 395
1243
+ },
1244
+ {
1245
+ "completion_length": 70.24464654922485,
1246
+ "epoch": 0.6184172383805199,
1247
+ "grad_norm": 0.09092889716408575,
1248
+ "kl": 4.0275390625,
1249
+ "learning_rate": 7.616940980675004e-06,
1250
+ "loss": 0.1611,
1251
+ "reward": 1.909550815820694,
1252
+ "reward_std": 0.11917392232409156,
1253
+ "rewards/accuracy_reward": 0.0,
1254
+ "rewards/cosine_scaled_reward": -0.0038421809673309325,
1255
+ "rewards/format_reward": 0.9473214507102966,
1256
+ "rewards/reasoning_steps_reward": 0.966071455180645,
1257
+ "step": 400
1258
+ },
1259
+ {
1260
+ "epoch": 0.6184172383805199,
1261
+ "eval_completion_length": 85.97321724891663,
1262
+ "eval_kl": 3.9296875,
1263
+ "eval_loss": 0.15645448863506317,
1264
+ "eval_reward": 1.8864707350730896,
1265
+ "eval_reward_std": 0.15602644719183445,
1266
+ "eval_rewards/accuracy_reward": 0.0,
1267
+ "eval_rewards/cosine_scaled_reward": -0.003410293662454933,
1268
+ "eval_rewards/format_reward": 0.933035746216774,
1269
+ "eval_rewards/reasoning_steps_reward": 0.9568452909588814,
1270
+ "eval_runtime": 132.6383,
1271
+ "eval_samples_per_second": 0.746,
1272
+ "eval_steps_per_second": 0.03,
1273
+ "step": 400
1274
+ },
1275
+ {
1276
+ "completion_length": 78.62679014205932,
1277
+ "epoch": 0.6261474538602764,
1278
+ "grad_norm": 0.10311342926080141,
1279
+ "kl": 3.9962890625,
1280
+ "learning_rate": 7.355272104742132e-06,
1281
+ "loss": 0.1599,
1282
+ "reward": 1.8960644856095314,
1283
+ "reward_std": 0.13990092346015218,
1284
+ "rewards/accuracy_reward": 0.0,
1285
+ "rewards/cosine_scaled_reward": -0.00423326367745176,
1286
+ "rewards/format_reward": 0.9383928827941418,
1287
+ "rewards/reasoning_steps_reward": 0.9619047924876213,
1288
+ "step": 405
1289
+ },
1290
+ {
1291
+ "completion_length": 77.0848256111145,
1292
+ "epoch": 0.6338776693400329,
1293
+ "grad_norm": 0.12373506403704226,
1294
+ "kl": 3.9802734375,
1295
+ "learning_rate": 7.095536274107046e-06,
1296
+ "loss": 0.1592,
1297
+ "reward": 1.898416666686535,
1298
+ "reward_std": 0.11678378849976526,
1299
+ "rewards/accuracy_reward": 0.0,
1300
+ "rewards/cosine_scaled_reward": -0.0048572868574410675,
1301
+ "rewards/format_reward": 0.9410714522004128,
1302
+ "rewards/reasoning_steps_reward": 0.9622024163603783,
1303
+ "step": 410
1304
+ },
1305
+ {
1306
+ "completion_length": 77.84375290870666,
1307
+ "epoch": 0.6416078848197894,
1308
+ "grad_norm": 0.09434877670325093,
1309
+ "kl": 3.988671875,
1310
+ "learning_rate": 6.837923331031761e-06,
1311
+ "loss": 0.1595,
1312
+ "reward": 1.9000333428382874,
1313
+ "reward_std": 0.12504753311442302,
1314
+ "rewards/accuracy_reward": 0.0,
1315
+ "rewards/cosine_scaled_reward": -0.004431077223853208,
1316
+ "rewards/format_reward": 0.9401785969734192,
1317
+ "rewards/reasoning_steps_reward": 0.9642857477068901,
1318
+ "step": 415
1319
+ },
1320
+ {
1321
+ "completion_length": 84.20625410079955,
1322
+ "epoch": 0.6493381002995459,
1323
+ "grad_norm": 0.09331120868084523,
1324
+ "kl": 3.9787109375,
1325
+ "learning_rate": 6.58262156614881e-06,
1326
+ "loss": 0.1592,
1327
+ "reward": 1.8847931444644928,
1328
+ "reward_std": 0.1432155600269084,
1329
+ "rewards/accuracy_reward": 0.0,
1330
+ "rewards/cosine_scaled_reward": -0.0056831808760762215,
1331
+ "rewards/format_reward": 0.9321428827941418,
1332
+ "rewards/reasoning_steps_reward": 0.9583333604037761,
1333
+ "step": 420
1334
+ },
1335
+ {
1336
+ "completion_length": 66.88036062717438,
1337
+ "epoch": 0.6570683157793024,
1338
+ "grad_norm": 0.19772149539193312,
1339
+ "kl": 4.0763671875,
1340
+ "learning_rate": 6.3298175808386284e-06,
1341
+ "loss": 0.1631,
1342
+ "reward": 1.9214427471160889,
1343
+ "reward_std": 0.10656861763076222,
1344
+ "rewards/accuracy_reward": 0.0,
1345
+ "rewards/cosine_scaled_reward": -0.004152622053516098,
1346
+ "rewards/format_reward": 0.9526785932481289,
1347
+ "rewards/reasoning_steps_reward": 0.9729166924953461,
1348
+ "step": 425
1349
+ },
1350
+ {
1351
+ "completion_length": 71.4062525510788,
1352
+ "epoch": 0.6647985312590589,
1353
+ "grad_norm": 0.17489903890816574,
1354
+ "kl": 4.015234375,
1355
+ "learning_rate": 6.079696150841634e-06,
1356
+ "loss": 0.1606,
1357
+ "reward": 1.9176838472485542,
1358
+ "reward_std": 0.10934554782797931,
1359
+ "rewards/accuracy_reward": 0.0,
1360
+ "rewards/cosine_scaled_reward": -0.0037448538321768867,
1361
+ "rewards/format_reward": 0.9464285939931869,
1362
+ "rewards/reasoning_steps_reward": 0.9750000186264515,
1363
+ "step": 430
1364
+ },
1365
+ {
1366
+ "completion_length": 82.87410979270935,
1367
+ "epoch": 0.6725287467388154,
1368
+ "grad_norm": 0.12536338202728264,
1369
+ "kl": 3.985546875,
1370
+ "learning_rate": 5.832440091204698e-06,
1371
+ "loss": 0.1594,
1372
+ "reward": 1.898548111319542,
1373
+ "reward_std": 0.13894653706357757,
1374
+ "rewards/accuracy_reward": 0.0,
1375
+ "rewards/cosine_scaled_reward": -0.0041305988444946705,
1376
+ "rewards/format_reward": 0.9339285999536514,
1377
+ "rewards/reasoning_steps_reward": 0.9687500208616256,
1378
+ "step": 435
1379
+ },
1380
+ {
1381
+ "completion_length": 73.71339569091796,
1382
+ "epoch": 0.6802589622185718,
1383
+ "grad_norm": 0.0831511845118778,
1384
+ "kl": 4.0279296875,
1385
+ "learning_rate": 5.588230122660672e-06,
1386
+ "loss": 0.1612,
1387
+ "reward": 1.910518865287304,
1388
+ "reward_std": 0.11439205608330667,
1389
+ "rewards/accuracy_reward": 0.0,
1390
+ "rewards/cosine_scaled_reward": -0.0034693721594521777,
1391
+ "rewards/format_reward": 0.9446428798139095,
1392
+ "rewards/reasoning_steps_reward": 0.9693452589213848,
1393
+ "step": 440
1394
+ },
1395
+ {
1396
+ "completion_length": 59.29910898208618,
1397
+ "epoch": 0.6879891776983283,
1398
+ "grad_norm": 0.06302346191293476,
1399
+ "kl": 4.091796875,
1400
+ "learning_rate": 5.347244739538677e-06,
1401
+ "loss": 0.1637,
1402
+ "reward": 1.9330023020505904,
1403
+ "reward_std": 0.08597645508125425,
1404
+ "rewards/accuracy_reward": 0.0,
1405
+ "rewards/cosine_scaled_reward": -0.0039025974809192123,
1406
+ "rewards/format_reward": 0.9589285895228385,
1407
+ "rewards/reasoning_steps_reward": 0.977976205945015,
1408
+ "step": 445
1409
+ },
1410
+ {
1411
+ "completion_length": 56.962501764297485,
1412
+ "epoch": 0.6957193931780848,
1413
+ "grad_norm": 0.0790724324832407,
1414
+ "kl": 4.0904296875,
1415
+ "learning_rate": 5.109660079301668e-06,
1416
+ "loss": 0.1636,
1417
+ "reward": 1.9378462925553321,
1418
+ "reward_std": 0.0833705105818808,
1419
+ "rewards/accuracy_reward": 0.0,
1420
+ "rewards/cosine_scaled_reward": -0.0038205120887141674,
1421
+ "rewards/format_reward": 0.9616071589291095,
1422
+ "rewards/reasoning_steps_reward": 0.980059539526701,
1423
+ "step": 450
1424
+ },
1425
+ {
1426
+ "completion_length": 115.70804004669189,
1427
+ "epoch": 0.7034496086578413,
1428
+ "grad_norm": 0.07587596082957317,
1429
+ "kl": 3.97265625,
1430
+ "learning_rate": 4.875649793806655e-06,
1431
+ "loss": 0.1589,
1432
+ "reward": 1.8709102511405944,
1433
+ "reward_std": 0.1623626801001933,
1434
+ "rewards/accuracy_reward": 0.0,
1435
+ "rewards/cosine_scaled_reward": -0.005280344319180586,
1436
+ "rewards/format_reward": 0.9000000312924386,
1437
+ "rewards/reasoning_steps_reward": 0.9761904969811439,
1438
+ "step": 455
1439
+ },
1440
+ {
1441
+ "completion_length": 57.54821660518646,
1442
+ "epoch": 0.7111798241375978,
1443
+ "grad_norm": 0.04214670683442245,
1444
+ "kl": 4.1099609375,
1445
+ "learning_rate": 4.64538492238166e-06,
1446
+ "loss": 0.1644,
1447
+ "reward": 1.9352339580655098,
1448
+ "reward_std": 0.08453528358004406,
1449
+ "rewards/accuracy_reward": 0.0,
1450
+ "rewards/cosine_scaled_reward": -0.0034566513902973385,
1451
+ "rewards/format_reward": 0.9598214477300644,
1452
+ "rewards/reasoning_steps_reward": 0.9788690611720086,
1453
+ "step": 460
1454
+ },
1455
+ {
1456
+ "completion_length": 51.64375264644623,
1457
+ "epoch": 0.7189100396173543,
1458
+ "grad_norm": 0.055977738202792546,
1459
+ "kl": 4.12734375,
1460
+ "learning_rate": 4.4190337668121964e-06,
1461
+ "loss": 0.165,
1462
+ "reward": 1.9431429341435433,
1463
+ "reward_std": 0.07587992586195469,
1464
+ "rewards/accuracy_reward": 0.0,
1465
+ "rewards/cosine_scaled_reward": -0.003881012083729729,
1466
+ "rewards/format_reward": 0.9669643014669418,
1467
+ "rewards/reasoning_steps_reward": 0.980059539526701,
1468
+ "step": 465
1469
+ },
1470
+ {
1471
+ "completion_length": 56.71964542865753,
1472
+ "epoch": 0.7266402550971108,
1473
+ "grad_norm": 0.1346185358347846,
1474
+ "kl": 4.091015625,
1475
+ "learning_rate": 4.196761768328599e-06,
1476
+ "loss": 0.1636,
1477
+ "reward": 1.9341410562396049,
1478
+ "reward_std": 0.08432842884212732,
1479
+ "rewards/accuracy_reward": 0.0,
1480
+ "rewards/cosine_scaled_reward": -0.003954318125033751,
1481
+ "rewards/format_reward": 0.9616071596741677,
1482
+ "rewards/reasoning_steps_reward": 0.9764881141483783,
1483
+ "step": 470
1484
+ },
1485
+ {
1486
+ "completion_length": 57.53839483261108,
1487
+ "epoch": 0.7343704705768673,
1488
+ "grad_norm": 0.06837566720060198,
1489
+ "kl": 4.121484375,
1490
+ "learning_rate": 3.978731386684206e-06,
1491
+ "loss": 0.1648,
1492
+ "reward": 1.9330390319228172,
1493
+ "reward_std": 0.08763236850500107,
1494
+ "rewards/accuracy_reward": 0.0,
1495
+ "rewards/cosine_scaled_reward": -0.00356825259514153,
1496
+ "rewards/format_reward": 0.9616071604192257,
1497
+ "rewards/reasoning_steps_reward": 0.9750000216066838,
1498
+ "step": 475
1499
+ },
1500
+ {
1501
+ "completion_length": 58.821430277824405,
1502
+ "epoch": 0.7421006860566238,
1503
+ "grad_norm": 0.0870444764801619,
1504
+ "kl": 4.094140625,
1505
+ "learning_rate": 3.7651019814126656e-06,
1506
+ "loss": 0.1639,
1507
+ "reward": 1.9318299040198326,
1508
+ "reward_std": 0.0834509583259205,
1509
+ "rewards/accuracy_reward": 0.0,
1510
+ "rewards/cosine_scaled_reward": -0.003884529904462397,
1511
+ "rewards/format_reward": 0.960714303702116,
1512
+ "rewards/reasoning_steps_reward": 0.9750000201165676,
1513
+ "step": 480
1514
+ },
1515
+ {
1516
+ "completion_length": 67.40535995960235,
1517
+ "epoch": 0.7498309015363803,
1518
+ "grad_norm": 0.07235089035047353,
1519
+ "kl": 4.0345703125,
1520
+ "learning_rate": 3.5560296953512296e-06,
1521
+ "loss": 0.1614,
1522
+ "reward": 1.9167783677577972,
1523
+ "reward_std": 0.10895022895697366,
1524
+ "rewards/accuracy_reward": 0.0,
1525
+ "rewards/cosine_scaled_reward": -0.003459858492715284,
1526
+ "rewards/format_reward": 0.951785734295845,
1527
+ "rewards/reasoning_steps_reward": 0.9684524081647397,
1528
+ "step": 485
1529
+ },
1530
+ {
1531
+ "completion_length": 72.09464554786682,
1532
+ "epoch": 0.7575611170161368,
1533
+ "grad_norm": 0.1027155942227925,
1534
+ "kl": 4.054296875,
1535
+ "learning_rate": 3.3516673405151546e-06,
1536
+ "loss": 0.1621,
1537
+ "reward": 1.9102395072579383,
1538
+ "reward_std": 0.11398139604827975,
1539
+ "rewards/accuracy_reward": 0.0,
1540
+ "rewards/cosine_scaled_reward": -0.0037487239431357013,
1541
+ "rewards/format_reward": 0.9464285969734192,
1542
+ "rewards/reasoning_steps_reward": 0.9675595439970494,
1543
+ "step": 490
1544
+ },
1545
+ {
1546
+ "completion_length": 79.98036060333251,
1547
+ "epoch": 0.7652913324958933,
1548
+ "grad_norm": 0.3055341411144215,
1549
+ "kl": 3.969140625,
1550
+ "learning_rate": 3.1521642864065905e-06,
1551
+ "loss": 0.1588,
1552
+ "reward": 1.8994512423872947,
1553
+ "reward_std": 0.1334554604154846,
1554
+ "rewards/accuracy_reward": 0.0,
1555
+ "rewards/cosine_scaled_reward": -0.0035250794346211476,
1556
+ "rewards/format_reward": 0.9392857417464257,
1557
+ "rewards/reasoning_steps_reward": 0.9636905036866665,
1558
+ "step": 495
1559
+ },
1560
+ {
1561
+ "completion_length": 79.49732532501221,
1562
+ "epoch": 0.7730215479756498,
1563
+ "grad_norm": 0.0481075530133631,
1564
+ "kl": 3.970703125,
1565
+ "learning_rate": 2.957666350839663e-06,
1566
+ "loss": 0.1587,
1567
+ "reward": 1.8963672295212746,
1568
+ "reward_std": 0.1335994067238971,
1569
+ "rewards/accuracy_reward": 0.0,
1570
+ "rewards/cosine_scaled_reward": -0.003930515790125355,
1571
+ "rewards/format_reward": 0.9383928842842579,
1572
+ "rewards/reasoning_steps_reward": 0.961904788017273,
1573
+ "step": 500
1574
+ },
1575
+ {
1576
+ "epoch": 0.7730215479756498,
1577
+ "eval_completion_length": 79.98661208152771,
1578
+ "eval_kl": 3.966796875,
1579
+ "eval_loss": 0.1587902307510376,
1580
+ "eval_reward": 1.9129911959171295,
1581
+ "eval_reward_std": 0.11852092316900098,
1582
+ "eval_rewards/accuracy_reward": 0.0,
1583
+ "eval_rewards/cosine_scaled_reward": -0.0036756078188773245,
1584
+ "eval_rewards/format_reward": 0.9464285969734192,
1585
+ "eval_rewards/reasoning_steps_reward": 0.970238134264946,
1586
+ "eval_runtime": 125.6388,
1587
+ "eval_samples_per_second": 0.788,
1588
+ "eval_steps_per_second": 0.032,
1589
+ "step": 500
1590
+ },
1591
+ {
1592
+ "completion_length": 87.8714322090149,
1593
+ "epoch": 0.7807517634554063,
1594
+ "grad_norm": 0.13866239123933727,
1595
+ "kl": 3.9505859375,
1596
+ "learning_rate": 2.768315693361474e-06,
1597
+ "loss": 0.158,
1598
+ "reward": 1.8883270829916001,
1599
+ "reward_std": 0.15002182250412943,
1600
+ "rewards/accuracy_reward": 0.0,
1601
+ "rewards/cosine_scaled_reward": -0.003637332082143985,
1602
+ "rewards/format_reward": 0.9321428842842578,
1603
+ "rewards/reasoning_steps_reward": 0.9598214574158191,
1604
+ "step": 505
1605
+ },
1606
+ {
1607
+ "completion_length": 76.42232499122619,
1608
+ "epoch": 0.7884819789351628,
1609
+ "grad_norm": 0.06252134672865321,
1610
+ "kl": 4.0162109375,
1611
+ "learning_rate": 2.5842507113469307e-06,
1612
+ "loss": 0.1606,
1613
+ "reward": 1.9065988451242446,
1614
+ "reward_std": 0.12157938196323811,
1615
+ "rewards/accuracy_reward": 0.0,
1616
+ "rewards/cosine_scaled_reward": -0.0035203441220801324,
1617
+ "rewards/format_reward": 0.942857164889574,
1618
+ "rewards/reasoning_steps_reward": 0.9672619260847568,
1619
+ "step": 510
1620
+ },
1621
+ {
1622
+ "completion_length": 71.84464635849,
1623
+ "epoch": 0.7962121944149193,
1624
+ "grad_norm": 0.053547609323593474,
1625
+ "kl": 4.02265625,
1626
+ "learning_rate": 2.405605938843416e-06,
1627
+ "loss": 0.1609,
1628
+ "reward": 1.913142444193363,
1629
+ "reward_std": 0.10145501654681084,
1630
+ "rewards/accuracy_reward": 0.0,
1631
+ "rewards/cosine_scaled_reward": -0.003524366064812057,
1632
+ "rewards/format_reward": 0.9473214514553547,
1633
+ "rewards/reasoning_steps_reward": 0.9693452551960945,
1634
+ "step": 515
1635
+ },
1636
+ {
1637
+ "completion_length": 72.07143197059631,
1638
+ "epoch": 0.8039424098946758,
1639
+ "grad_norm": 0.11014893043681045,
1640
+ "kl": 4.02265625,
1641
+ "learning_rate": 2.2325119482391466e-06,
1642
+ "loss": 0.1609,
1643
+ "reward": 1.912400482594967,
1644
+ "reward_std": 0.11260003176839746,
1645
+ "rewards/accuracy_reward": 0.0,
1646
+ "rewards/cosine_scaled_reward": -0.0036710815300466495,
1647
+ "rewards/format_reward": 0.9473214492201805,
1648
+ "rewards/reasoning_steps_reward": 0.9687500201165676,
1649
+ "step": 520
1650
+ },
1651
+ {
1652
+ "completion_length": 71.91250350475312,
1653
+ "epoch": 0.8116726253744323,
1654
+ "grad_norm": 0.06342775337824043,
1655
+ "kl": 4.0349609375,
1656
+ "learning_rate": 2.065095254827133e-06,
1657
+ "loss": 0.1614,
1658
+ "reward": 1.9105623066425323,
1659
+ "reward_std": 0.11352632529434459,
1660
+ "rewards/accuracy_reward": 0.0,
1661
+ "rewards/cosine_scaled_reward": -0.003425922698806971,
1662
+ "rewards/format_reward": 0.946428594738245,
1663
+ "rewards/reasoning_steps_reward": 0.9675595439970494,
1664
+ "step": 525
1665
+ },
1666
+ {
1667
+ "completion_length": 74.61964704990388,
1668
+ "epoch": 0.8194028408541888,
1669
+ "grad_norm": 0.052026170437193264,
1670
+ "kl": 4.01875,
1671
+ "learning_rate": 1.9034782243345074e-06,
1672
+ "loss": 0.1607,
1673
+ "reward": 1.9095401376485825,
1674
+ "reward_std": 0.11663368406508426,
1675
+ "rewards/accuracy_reward": 0.0,
1676
+ "rewards/cosine_scaled_reward": -0.0035552371642552315,
1677
+ "rewards/format_reward": 0.9446428820490838,
1678
+ "rewards/reasoning_steps_reward": 0.9684524036943912,
1679
+ "step": 530
1680
+ },
1681
+ {
1682
+ "completion_length": 77.84553978443145,
1683
+ "epoch": 0.8271330563339453,
1684
+ "grad_norm": 0.09858238225370353,
1685
+ "kl": 4.009765625,
1686
+ "learning_rate": 1.7477789834847835e-06,
1687
+ "loss": 0.1604,
1688
+ "reward": 1.902077753841877,
1689
+ "reward_std": 0.12957435930147768,
1690
+ "rewards/accuracy_reward": 0.0,
1691
+ "rewards/cosine_scaled_reward": -0.003874768817331642,
1692
+ "rewards/format_reward": 0.9419643104076385,
1693
+ "rewards/reasoning_steps_reward": 0.9639881193637848,
1694
+ "step": 535
1695
+ },
1696
+ {
1697
+ "completion_length": 82.68750412464142,
1698
+ "epoch": 0.8348632718137018,
1699
+ "grad_norm": 0.065574476351722,
1700
+ "kl": 3.98203125,
1701
+ "learning_rate": 1.5981113336584041e-06,
1702
+ "loss": 0.1593,
1703
+ "reward": 1.89682334959507,
1704
+ "reward_std": 0.13294254373256537,
1705
+ "rewards/accuracy_reward": 0.0,
1706
+ "rewards/cosine_scaled_reward": -0.003474415006348863,
1707
+ "rewards/format_reward": 0.9375000275671482,
1708
+ "rewards/reasoning_steps_reward": 0.9627976469695568,
1709
+ "step": 540
1710
+ },
1711
+ {
1712
+ "completion_length": 70.13036069869995,
1713
+ "epoch": 0.8425934872934583,
1714
+ "grad_norm": 0.1318813583738261,
1715
+ "kl": 4.043359375,
1716
+ "learning_rate": 1.4545846677147446e-06,
1717
+ "loss": 0.1617,
1718
+ "reward": 1.920035783946514,
1719
+ "reward_std": 0.10434096483513713,
1720
+ "rewards/accuracy_reward": 0.0,
1721
+ "rewards/cosine_scaled_reward": -0.003476260631578043,
1722
+ "rewards/format_reward": 0.9491071656346322,
1723
+ "rewards/reasoning_steps_reward": 0.9744047850370408,
1724
+ "step": 545
1725
+ },
1726
+ {
1727
+ "completion_length": 60.432145619392394,
1728
+ "epoch": 0.8503237027732148,
1729
+ "grad_norm": 0.09318876295576914,
1730
+ "kl": 4.0876953125,
1731
+ "learning_rate": 1.3173038900362977e-06,
1732
+ "loss": 0.1635,
1733
+ "reward": 1.9312258705496788,
1734
+ "reward_std": 0.08848651480149101,
1735
+ "rewards/accuracy_reward": 0.0,
1736
+ "rewards/cosine_scaled_reward": -0.0035956974781583993,
1737
+ "rewards/format_reward": 0.958035733550787,
1738
+ "rewards/reasoning_steps_reward": 0.9767857387661933,
1739
+ "step": 550
1740
+ },
1741
+ {
1742
+ "completion_length": 70.33036000728607,
1743
+ "epoch": 0.8580539182529713,
1744
+ "grad_norm": 0.07392017210161962,
1745
+ "kl": 4.029296875,
1746
+ "learning_rate": 1.1863693398535115e-06,
1747
+ "loss": 0.1611,
1748
+ "reward": 1.9152584731578828,
1749
+ "reward_std": 0.11109586956590647,
1750
+ "rewards/accuracy_reward": 0.0,
1751
+ "rewards/cosine_scaled_reward": -0.0037892865744652226,
1752
+ "rewards/format_reward": 0.9482143081724643,
1753
+ "rewards/reasoning_steps_reward": 0.9708333566784859,
1754
+ "step": 555
1755
+ },
1756
+ {
1757
+ "completion_length": 75.85178906917572,
1758
+ "epoch": 0.8657841337327278,
1759
+ "grad_norm": 0.055625451749199084,
1760
+ "kl": 4.0359375,
1761
+ "learning_rate": 1.0618767179063416e-06,
1762
+ "loss": 0.1615,
1763
+ "reward": 1.9078429341316223,
1764
+ "reward_std": 0.11737079951482202,
1765
+ "rewards/accuracy_reward": 0.0,
1766
+ "rewards/cosine_scaled_reward": -0.004061957640806213,
1767
+ "rewards/format_reward": 0.9428571663796902,
1768
+ "rewards/reasoning_steps_reward": 0.9690476417541504,
1769
+ "step": 560
1770
+ },
1771
+ {
1772
+ "completion_length": 83.18482513427735,
1773
+ "epoch": 0.8735143492124843,
1774
+ "grad_norm": 0.0325554385194626,
1775
+ "kl": 3.9732421875,
1776
+ "learning_rate": 9.439170164960765e-07,
1777
+ "loss": 0.1589,
1778
+ "reward": 1.8949774771928787,
1779
+ "reward_std": 0.13219705742287716,
1780
+ "rewards/accuracy_reward": 0.0,
1781
+ "rewards/cosine_scaled_reward": -0.0038321896485285834,
1782
+ "rewards/format_reward": 0.9357143126428127,
1783
+ "rewards/reasoning_steps_reward": 0.9630952678620815,
1784
+ "step": 565
1785
+ },
1786
+ {
1787
+ "completion_length": 74.5973245382309,
1788
+ "epoch": 0.8812445646922408,
1789
+ "grad_norm": 0.07216264151387287,
1790
+ "kl": 3.9919921875,
1791
+ "learning_rate": 8.325764529785851e-07,
1792
+ "loss": 0.1596,
1793
+ "reward": 1.9114135801792145,
1794
+ "reward_std": 0.11653647294224356,
1795
+ "rewards/accuracy_reward": 0.0,
1796
+ "rewards/cosine_scaled_reward": -0.003467519613332115,
1797
+ "rewards/format_reward": 0.9446428813040256,
1798
+ "rewards/reasoning_steps_reward": 0.9702381134033203,
1799
+ "step": 570
1800
+ },
1801
+ {
1802
+ "completion_length": 80.90625429153442,
1803
+ "epoch": 0.8889747801719973,
1804
+ "grad_norm": 0.1218928141161543,
1805
+ "kl": 4.0041015625,
1806
+ "learning_rate": 7.279364067476247e-07,
1807
+ "loss": 0.1601,
1808
+ "reward": 1.9003287717700004,
1809
+ "reward_std": 0.13390125300320505,
1810
+ "rewards/accuracy_reward": 0.0,
1811
+ "rewards/cosine_scaled_reward": -0.00383802902942989,
1812
+ "rewards/format_reward": 0.9375000275671482,
1813
+ "rewards/reasoning_steps_reward": 0.9666666924953461,
1814
+ "step": 575
1815
+ },
1816
+ {
1817
+ "completion_length": 73.71339654922485,
1818
+ "epoch": 0.8967049956517538,
1819
+ "grad_norm": 0.0779054928956573,
1820
+ "kl": 4.0125,
1821
+ "learning_rate": 6.300733597542086e-07,
1822
+ "loss": 0.1604,
1823
+ "reward": 1.9101678639650346,
1824
+ "reward_std": 0.11828550670562663,
1825
+ "rewards/accuracy_reward": 0.0,
1826
+ "rewards/cosine_scaled_reward": -0.003522748072282411,
1827
+ "rewards/format_reward": 0.9455357365310192,
1828
+ "rewards/reasoning_steps_reward": 0.9681547850370407,
1829
+ "step": 580
1830
+ },
1831
+ {
1832
+ "completion_length": 87.17946894168854,
1833
+ "epoch": 0.9044352111315103,
1834
+ "grad_norm": 0.28673289049569806,
1835
+ "kl": 3.9888671875,
1836
+ "learning_rate": 5.390588406055497e-07,
1837
+ "loss": 0.1595,
1838
+ "reward": 1.8926132425665856,
1839
+ "reward_std": 0.14313040670480176,
1840
+ "rewards/accuracy_reward": 0.0,
1841
+ "rewards/cosine_scaled_reward": -0.0035178393678506835,
1842
+ "rewards/format_reward": 0.9330357432365417,
1843
+ "rewards/reasoning_steps_reward": 0.9630952633917331,
1844
+ "step": 585
1845
+ },
1846
+ {
1847
+ "completion_length": 65.64018182754516,
1848
+ "epoch": 0.9121654266112668,
1849
+ "grad_norm": 0.09094243510356628,
1850
+ "kl": 4.05390625,
1851
+ "learning_rate": 4.549593722844492e-07,
1852
+ "loss": 0.1621,
1853
+ "reward": 1.9212124049663544,
1854
+ "reward_std": 0.10267741186544299,
1855
+ "rewards/accuracy_reward": 0.0,
1856
+ "rewards/cosine_scaled_reward": -0.0034901109320344403,
1857
+ "rewards/format_reward": 0.9535714477300644,
1858
+ "rewards/reasoning_steps_reward": 0.9711309760808945,
1859
+ "step": 590
1860
+ },
1861
+ {
1862
+ "completion_length": 73.72411081790924,
1863
+ "epoch": 0.9198956420910233,
1864
+ "grad_norm": 0.042966362813253126,
1865
+ "kl": 4.0140625,
1866
+ "learning_rate": 3.77836423527278e-07,
1867
+ "loss": 0.1606,
1868
+ "reward": 1.9099439069628716,
1869
+ "reward_std": 0.11524384366857703,
1870
+ "rewards/accuracy_reward": 0.0,
1871
+ "rewards/cosine_scaled_reward": -0.003449089830974117,
1872
+ "rewards/format_reward": 0.9455357365310192,
1873
+ "rewards/reasoning_steps_reward": 0.967857164144516,
1874
+ "step": 595
1875
+ },
1876
+ {
1877
+ "completion_length": 76.99911091327667,
1878
+ "epoch": 0.9276258575707798,
1879
+ "grad_norm": 0.10859950376158761,
1880
+ "kl": 4.0298828125,
1881
+ "learning_rate": 3.0774636389618196e-07,
1882
+ "loss": 0.1611,
1883
+ "reward": 1.9045991107821465,
1884
+ "reward_std": 0.11265480399888475,
1885
+ "rewards/accuracy_reward": 0.0,
1886
+ "rewards/cosine_scaled_reward": -0.004031982950982638,
1887
+ "rewards/format_reward": 0.9410714529454708,
1888
+ "rewards/reasoning_steps_reward": 0.9675595439970494,
1889
+ "step": 600
1890
+ },
1891
+ {
1892
+ "epoch": 0.9276258575707798,
1893
+ "eval_completion_length": 54.86607503890991,
1894
+ "eval_kl": 4.048828125,
1895
+ "eval_loss": 0.1622004508972168,
1896
+ "eval_reward": 1.9295674413442612,
1897
+ "eval_reward_std": 0.09507856704294682,
1898
+ "eval_rewards/accuracy_reward": 0.0,
1899
+ "eval_rewards/cosine_scaled_reward": -0.0034684068523347378,
1900
+ "eval_rewards/format_reward": 0.9598214477300644,
1901
+ "eval_rewards/reasoning_steps_reward": 0.9732143208384514,
1902
+ "eval_runtime": 125.081,
1903
+ "eval_samples_per_second": 0.791,
1904
+ "eval_steps_per_second": 0.032,
1905
+ "step": 600
1906
+ },
1907
+ {
1908
+ "completion_length": 70.12500309944153,
1909
+ "epoch": 0.9353560730505363,
1910
+ "grad_norm": 0.05179823112310112,
1911
+ "kl": 4.0185546875,
1912
+ "learning_rate": 2.44740422578269e-07,
1913
+ "loss": 0.1607,
1914
+ "reward": 1.9167007893323897,
1915
+ "reward_std": 0.10983568504452705,
1916
+ "rewards/accuracy_reward": 0.0,
1917
+ "rewards/cosine_scaled_reward": -0.0035374575527384877,
1918
+ "rewards/format_reward": 0.9482143089175225,
1919
+ "rewards/reasoning_steps_reward": 0.9720238253474236,
1920
+ "step": 605
1921
+ },
1922
+ {
1923
+ "completion_length": 71.05714664459228,
1924
+ "epoch": 0.9430862885302927,
1925
+ "grad_norm": 0.04825879971717623,
1926
+ "kl": 4.0408203125,
1927
+ "learning_rate": 1.8886465094192895e-07,
1928
+ "loss": 0.1616,
1929
+ "reward": 1.916950461268425,
1930
+ "reward_std": 0.10439383089745888,
1931
+ "rewards/accuracy_reward": 0.0,
1932
+ "rewards/cosine_scaled_reward": -0.0035853900481015444,
1933
+ "rewards/format_reward": 0.9491071656346322,
1934
+ "rewards/reasoning_steps_reward": 0.9714285925030708,
1935
+ "step": 610
1936
+ },
1937
+ {
1938
+ "completion_length": 73.90893230438232,
1939
+ "epoch": 0.9508165040100492,
1940
+ "grad_norm": 0.07733704565763884,
1941
+ "kl": 4.0107421875,
1942
+ "learning_rate": 1.401598888776523e-07,
1943
+ "loss": 0.1604,
1944
+ "reward": 1.9141234815120698,
1945
+ "reward_std": 0.11271129585802556,
1946
+ "rewards/accuracy_reward": 0.0,
1947
+ "rewards/cosine_scaled_reward": -0.0037338059541070835,
1948
+ "rewards/format_reward": 0.9455357372760773,
1949
+ "rewards/reasoning_steps_reward": 0.9723214514553546,
1950
+ "step": 615
1951
+ },
1952
+ {
1953
+ "completion_length": 74.61875405311585,
1954
+ "epoch": 0.9585467194898057,
1955
+ "grad_norm": 0.09563400241916642,
1956
+ "kl": 4.0271484375,
1957
+ "learning_rate": 9.866173494794462e-08,
1958
+ "loss": 0.1611,
1959
+ "reward": 1.9092511892318726,
1960
+ "reward_std": 0.12381009180098772,
1961
+ "rewards/accuracy_reward": 0.0,
1962
+ "rewards/cosine_scaled_reward": -0.0035465647582896055,
1963
+ "rewards/format_reward": 0.9446428820490838,
1964
+ "rewards/reasoning_steps_reward": 0.9681547835469246,
1965
+ "step": 620
1966
+ },
1967
+ {
1968
+ "completion_length": 74.12857549190521,
1969
+ "epoch": 0.9662769349695622,
1970
+ "grad_norm": 0.06433206274792466,
1971
+ "kl": 4.0037109375,
1972
+ "learning_rate": 6.440052036815081e-08,
1973
+ "loss": 0.1602,
1974
+ "reward": 1.9127392619848251,
1975
+ "reward_std": 0.11887687893087104,
1976
+ "rewards/accuracy_reward": 0.0,
1977
+ "rewards/cosine_scaled_reward": -0.003927528584608808,
1978
+ "rewards/format_reward": 0.9473214522004128,
1979
+ "rewards/reasoning_steps_reward": 0.9693452633917332,
1980
+ "step": 625
1981
+ },
1982
+ {
1983
+ "completion_length": 79.99643235206604,
1984
+ "epoch": 0.9740071504493187,
1985
+ "grad_norm": 0.031726665005581765,
1986
+ "kl": 4.0005859375,
1987
+ "learning_rate": 3.7401286837214224e-08,
1988
+ "loss": 0.16,
1989
+ "reward": 1.900482177734375,
1990
+ "reward_std": 0.12850792148201434,
1991
+ "rewards/accuracy_reward": 0.0,
1992
+ "rewards/cosine_scaled_reward": -0.003684622357832268,
1993
+ "rewards/format_reward": 0.9392857387661934,
1994
+ "rewards/reasoning_steps_reward": 0.9648809768259525,
1995
+ "step": 630
1996
+ },
1997
+ {
1998
+ "completion_length": 79.1017897605896,
1999
+ "epoch": 0.9817373659290752,
2000
+ "grad_norm": 0.07055867261765238,
2001
+ "kl": 4.007421875,
2002
+ "learning_rate": 1.7683768234568745e-08,
2003
+ "loss": 0.1603,
2004
+ "reward": 1.9047423645853996,
2005
+ "reward_std": 0.1259796370670415,
2006
+ "rewards/accuracy_reward": 0.0,
2007
+ "rewards/cosine_scaled_reward": -0.0035911083628889172,
2008
+ "rewards/format_reward": 0.9401785977184772,
2009
+ "rewards/reasoning_steps_reward": 0.9681547895073891,
2010
+ "step": 635
2011
+ },
2012
+ {
2013
+ "completion_length": 70.12857460975647,
2014
+ "epoch": 0.9894675814088317,
2015
+ "grad_norm": 0.03510443981029856,
2016
+ "kl": 4.028515625,
2017
+ "learning_rate": 5.262376196544239e-09,
2018
+ "loss": 0.1611,
2019
+ "reward": 1.9158729910850525,
2020
+ "reward_std": 0.11106844576099775,
2021
+ "rewards/accuracy_reward": 0.0,
2022
+ "rewards/cosine_scaled_reward": -0.003472377223079093,
2023
+ "rewards/format_reward": 0.949107164144516,
2024
+ "rewards/reasoning_steps_reward": 0.9702381178736686,
2025
+ "step": 640
2026
+ },
2027
+ {
2028
+ "completion_length": 66.0607172012329,
2029
+ "epoch": 0.9971977968885882,
2030
+ "grad_norm": 0.1041554063271925,
2031
+ "kl": 4.050390625,
2032
+ "learning_rate": 1.461895828280824e-10,
2033
+ "loss": 0.162,
2034
+ "reward": 1.9202266588807106,
2035
+ "reward_std": 0.10828843610361219,
2036
+ "rewards/accuracy_reward": 0.0,
2037
+ "rewards/cosine_scaled_reward": -0.0038806214783107863,
2038
+ "rewards/format_reward": 0.9526785917580127,
2039
+ "rewards/reasoning_steps_reward": 0.9714285910129548,
2040
+ "step": 645
2041
+ },
2042
+ {
2043
+ "completion_length": 59.3750034570694,
2044
+ "epoch": 0.9987438399845395,
2045
+ "kl": 4.0791015625,
2046
+ "reward": 1.9341124221682549,
2047
+ "reward_std": 0.0886426616698941,
2048
+ "rewards/accuracy_reward": 0.0,
2049
+ "rewards/cosine_scaled_reward": -0.003387685399502516,
2050
+ "rewards/format_reward": 0.9598214477300644,
2051
+ "rewards/reasoning_steps_reward": 0.977678582072258,
2052
+ "step": 646,
2053
+ "total_flos": 0.0,
2054
+ "train_loss": 379.5353878517854,
2055
+ "train_runtime": 232403.7931,
2056
+ "train_samples_per_second": 0.312,
2057
+ "train_steps_per_second": 0.003
2058
+ }
2059
+ ],
2060
+ "logging_steps": 5,
2061
+ "max_steps": 646,
2062
+ "num_input_tokens_seen": 0,
2063
+ "num_train_epochs": 1,
2064
+ "save_steps": 500,
2065
+ "stateful_callbacks": {
2066
+ "TrainerControl": {
2067
+ "args": {
2068
+ "should_epoch_stop": false,
2069
+ "should_evaluate": false,
2070
+ "should_log": false,
2071
+ "should_save": false,
2072
+ "should_training_stop": false
2073
+ },
2074
+ "attributes": {}
2075
+ }
2076
+ },
2077
+ "total_flos": 0.0,
2078
+ "train_batch_size": 2,
2079
+ "trial_name": null,
2080
+ "trial_params": null
2081
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e81028790fb3d3f5d6f376245c71297fed6ab72454aa24b3f36c69f7bc9ce2d8
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff