brunokreiner commited on
Commit
7b1d0eb
·
1 Parent(s): 6a7fbd7

Create README.md

Browse files

bert-base-uncased model reset and trained on 480000 lyrics crawled from the genius API.

Files changed (1) hide show
  1. README.md +186 -0
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - music
6
+ ---
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ Embeds song lyrics to 300 dimensions.
12
+
13
+ # Model Details
14
+
15
+ ## Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+ - **Developed by:** [More Information Needed]
20
+ - **Shared by [optional]:** [More Information Needed]
21
+ - **Model type:** bert-base-uncased trained with contrastive learning
22
+ - **Language(s) (NLP):** [More Information Needed]
23
+ - **License:** [More Information Needed]
24
+ - **Finetuned from model [optional]:** [More Information Needed]
25
+
26
+ ## Model Sources [optional]
27
+
28
+ <!-- Provide the basic links for the model. -->
29
+
30
+ - **Repository:** [More Information Needed]
31
+ - **Paper [optional]:** [More Information Needed]
32
+ - **Demo [optional]:** [More Information Needed]
33
+
34
+ # Uses
35
+
36
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+
38
+ ## Direct Use
39
+
40
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
41
+
42
+ [More Information Needed]
43
+
44
+ ## Downstream Use [optional]
45
+
46
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
47
+
48
+ [More Information Needed]
49
+
50
+ ## Out-of-Scope Use
51
+
52
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
53
+
54
+ [More Information Needed]
55
+
56
+ # Bias, Risks, and Limitations
57
+
58
+ ## Translate to English:
59
+ chlussendlich existieren die Lyrics für 606'255 Songs. Um das weitere Vorgehen zu vereinfachen, wurden diese Songs durch die Python-Implementierung eines in Java implementierten Google Sprachdetektors \cite{nakatani2010langdetect} \cite{langdetectpy} gefiltert und nur die verbleibenden 480'964 englischen Lyrics werden weiter beachtet.
60
+
61
+ \subsection{Weitere Probleme}
62
+
63
+ Im Nachhinein wurden 109 Lyrics festgestellt, die Spezialcharaktere haben, welche nicht vom Cleanup fetgestellt wurden. Diese wurden mit dem Regex \glqq '[a-zA-Z|\'|0-9]'\grqq{} gematcht und im Training ignoriert. Im Training wurden aber trotzdem einige Lyrics miteinberechnet, die zwar keine Spezialcharaktere haben, aber nicht ganz Englisch sind. Dadurch encoded das Languagemodel auch Japanische / Koreanische / Chinesische / Russische / Griechische sowie Spezialcharakter aus lateinischer Sprachen, jedoch mit sehr wenigen Trainingsdaten. Diese Lyrics wurden nicht durch das Google Spracherkennungsmodell als \glqq nicht Englisch\grqq{} eingestuft, weil sie genügend englische Wörter haben. Wir nehmen an, dass diese Lyrics das Training nicht gross beeinflussen und man kann von circa 500 solcher Songs ausgehen.
64
+
65
+ Einige Lyrics sind auch lateinigiserte Versionen von japanischen / koreanischen / chinesischen Lieder (manuell geprüft). Weitere Grenzfälle sind Lyrics mit akzentuierten Lyrics wie:
66
+ \\[8pt]
67
+ \glqq let your fists swang k i c k y o a s s oh yes k i c k y o a s s oh yes i say beat you say that ass\grqq{}
68
+ \\[8pt]
69
+ Eine Analyse fehlt über was genau mit diesen Wörtern im Embedding Space passiert.
70
+
71
+ ## Recommendations
72
+
73
+ bias, risk, technical limitations...
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ # Training Details
82
+
83
+ ## Training Data
84
+
85
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+
88
+
89
+ [More Information Needed]
90
+
91
+ ## Training Procedure [optional]
92
+
93
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
+
95
+ ### Preprocessing
96
+
97
+ [More Information Needed]
98
+
99
+ ### Speeds, Sizes, Times
100
+
101
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
+
103
+ [More Information Needed]
104
+
105
+ # Evaluation
106
+
107
+ <!-- This section describes the evaluation protocols and provides the results. -->
108
+
109
+ ## Testing Data, Factors & Metrics
110
+
111
+ ### Testing Data
112
+
113
+ <!-- This should link to a Data Card if possible. -->
114
+
115
+ [More Information Needed]
116
+
117
+ ### Factors
118
+
119
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
+
121
+ [More Information Needed]
122
+
123
+ ### Metrics
124
+
125
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
+
127
+ [More Information Needed]
128
+
129
+ ## Results
130
+
131
+ [More Information Needed]
132
+
133
+ ### Summary
134
+
135
+
136
+
137
+ # Model Examination [optional]
138
+
139
+ <!-- Relevant interpretability work for the model goes here -->
140
+
141
+ [More Information Needed]
142
+
143
+ # Environmental Impact
144
+
145
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
+
147
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
+
149
+ - **Hardware Type:** [More Information Needed]
150
+ - **Hours used:** [More Information Needed]
151
+ - **Cloud Provider:** [More Information Needed]
152
+ - **Compute Region:** [More Information Needed]
153
+ - **Carbon Emitted:** [More Information Needed]
154
+
155
+ # Technical Specifications [optional]
156
+
157
+ ## Model Architecture and Objective
158
+
159
+ [More Information Needed]
160
+
161
+ ## Compute Infrastructure
162
+
163
+ [More Information Needed]
164
+
165
+ ### Hardware
166
+
167
+ [More Information Needed]
168
+
169
+ ### Software
170
+
171
+ [More Information Needed]
172
+
173
+ # Citation [optional]
174
+
175
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
+
177
+ **BibTeX:**
178
+
179
+ [More Information Needed]
180
+
181
+ # Model Card Contact
182
+
183
+ for more info contact
184
+ brunokreiner@hotmail.ch
185
+
186
+