my first rl yay!
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +91 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 246.39 +/- 16.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd987291790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd987291820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9872918b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd987291940>", "_build": "<function ActorCriticPolicy._build at 0x7fd9872919d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd987291a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd987291af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd987291b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd987291c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd987291ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd987291d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd9872921b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670958371292155081, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93LxY0CUhpRSlIwBbJRN6AOMAXSUR0CWOxkMCtA+dX2UKGgGaAloD0MIHF97Zsl7cECUhpRSlGgVTQYBaBZHQJY8kgyM1j11fZQoaAZoCWgPQwgsZoS3R19xQJSGlFKUaBVNDgFoFkdAljysQI2OyXV9lChoBmgJaA9DCHkGDf0TqW9AlIaUUpRoFU0PAWgWR0CWPmWT5ftydX2UKGgGaAloD0MItJPBUTLKcECUhpRSlGgVS/NoFkdAlj7MfvF3p3V9lChoBmgJaA9DCM2xvKse+kFAlIaUUpRoFUvIaBZHQJY/C7Bfrrx1fZQoaAZoCWgPQwjtZdtpK6twQJSGlFKUaBVNGQFoFkdAlj+2vB7/oHV9lChoBmgJaA9DCMkBu5r8u3BAlIaUUpRoFU0BAWgWR0CWQVEuxrzodX2UKGgGaAloD0MISMX/HRFCcECUhpRSlGgVTQ0BaBZHQJZCD+PzWf91fZQoaAZoCWgPQwh+5NakW5BxQJSGlFKUaBVL8mgWR0CWQn4xDb8FdX2UKGgGaAloD0MIsB73rRYtcECUhpRSlGgVS+toFkdAlkTIYR/ViHV9lChoBmgJaA9DCKHYCppWVHBAlIaUUpRoFU1UAWgWR0CWRa9US7GvdX2UKGgGaAloD0MIMLjmjv7WbUCUhpRSlGgVTQcBaBZHQJZFul/H5rR1fZQoaAZoCWgPQwg+Qs2QquRvQJSGlFKUaBVL8mgWR0CWR3gcLjPwdX2UKGgGaAloD0MIEjP7PAbAcUCUhpRSlGgVTRwBaBZHQJZIuPuG9Ht1fZQoaAZoCWgPQwhtj95wHxdiQJSGlFKUaBVN6ANoFkdAlkjKMJhOQHV9lChoBmgJaA9DCIBFfv0QmnFAlIaUUpRoFU0wAWgWR0CWprA6Mir1dX2UKGgGaAloD0MIU5J1OLpccECUhpRSlGgVS/VoFkdAlqfdsenyeHV9lChoBmgJaA9DCMlXAikxP3BAlIaUUpRoFUvfaBZHQJaqMAiml691fZQoaAZoCWgPQwijPV5Ix3ZwQJSGlFKUaBVNUgFoFkdAlqyGYnfEXXV9lChoBmgJaA9DCMgMVMY/ym9AlIaUUpRoFUv8aBZHQJasq35N47l1fZQoaAZoCWgPQwgTDr3FA+xxQJSGlFKUaBVNfAFoFkdAlqzq4H5aeXV9lChoBmgJaA9DCFq3Qe231m5AlIaUUpRoFUvpaBZHQJaty1NQCS11fZQoaAZoCWgPQwhT7GgcaixjQJSGlFKUaBVN6ANoFkdAlq3RLGrCFnV9lChoBmgJaA9DCO2BVmBIaWFAlIaUUpRoFU3oA2gWR0CWreP8AJb/dX2UKGgGaAloD0MIhH8RNCYDcECUhpRSlGgVS/5oFkdAlq/GShakh3V9lChoBmgJaA9DCPkwe9l2mWJAlIaUUpRoFU3oA2gWR0CWsDLUkOZtdX2UKGgGaAloD0MImkARiximb0CUhpRSlGgVTREBaBZHQJawdZq20At1fZQoaAZoCWgPQwjyQGSRpuZtQJSGlFKUaBVNHAFoFkdAlrNVpfx+a3V9lChoBmgJaA9DCPVKWYY4EGxAlIaUUpRoFUvwaBZHQJazw8OkLx91fZQoaAZoCWgPQwjQYFPnUTtxQJSGlFKUaBVL22gWR0CWtRrbg0j1dX2UKGgGaAloD0MI93XgnBHhbkCUhpRSlGgVS/hoFkdAlrYvwd8zAXV9lChoBmgJaA9DCEW94NOcVW5AlIaUUpRoFUv+aBZHQJa3xNlAeJZ1fZQoaAZoCWgPQwgJ+aBnM2JrQJSGlFKUaBVNIAFoFkdAlrhJIUahpXV9lChoBmgJaA9DCOm12ViJ+G5AlIaUUpRoFU06AmgWR0CWuTTrE9+xdX2UKGgGaAloD0MI/IwLB0LDcUCUhpRSlGgVTWcBaBZHQJa8PE61b7l1fZQoaAZoCWgPQwiTjJyFPXZuQJSGlFKUaBVNKwNoFkdAlrx0pRXOnnV9lChoBmgJaA9DCPgYrDjVNGRAlIaUUpRoFU3oA2gWR0CWvJq6e5FxdX2UKGgGaAloD0MIuHcN+hJecECUhpRSlGgVS/9oFkdAlr34AwPAf3V9lChoBmgJaA9DCIqPT8hOA2NAlIaUUpRoFU3oA2gWR0CWvlgU1yeadX2UKGgGaAloD0MIJ/bQPpa5cECUhpRSlGgVTVkBaBZHQJa+a6cy31B1fZQoaAZoCWgPQwieQxmqIg5wQJSGlFKUaBVL8mgWR0CWvx76YVqOdX2UKGgGaAloD0MIiPNwAtOub0CUhpRSlGgVTRYBaBZHQJa/OwA2hqV1fZQoaAZoCWgPQwh7o1aYvtZwQJSGlFKUaBVL6WgWR0CWwYJJXhfjdX2UKGgGaAloD0MI5e/eUWNcb0CUhpRSlGgVS/1oFkdAlsHXZ9NN8HV9lChoBmgJaA9DCFwBhXr6P29AlIaUUpRoFU0tAWgWR0CWxR+RoysTdX2UKGgGaAloD0MIs89jlGckcECUhpRSlGgVS/doFkdAlsYwMUh3aHV9lChoBmgJaA9DCE1nJ4MjJ29AlIaUUpRoFUv+aBZHQJbGV1PnB+F1fZQoaAZoCWgPQwgvTny1I3FxQJSGlFKUaBVL5mgWR0CWx3gOSW7fdX2UKGgGaAloD0MITPxR1JmJb0CUhpRSlGgVS/VoFkdAlseYrBj4H3V9lChoBmgJaA9DCD4kfO9vtG5AlIaUUpRoFUv0aBZHQJbJD6SDAah1fZQoaAZoCWgPQwgVjiCVotlwQJSGlFKUaBVNIAFoFkdAlsnn27FsHnV9lChoBmgJaA9DCIDvNm+cWXFAlIaUUpRoFU0eAWgWR0CWyrFH8TBZdX2UKGgGaAloD0MI4e1BCEh4bkCUhpRSlGgVTZcCaBZHQJbK7zkIX0p1fZQoaAZoCWgPQwi9xi5RvZttQJSGlFKUaBVL/GgWR0CWy945tFa0dX2UKGgGaAloD0MIu3zrw/oIcECUhpRSlGgVTdICaBZHQJbMu+UQkHF1fZQoaAZoCWgPQwgnaf6YFnxxQJSGlFKUaBVL5mgWR0CWzn0CRwIddX2UKGgGaAloD0MISgfr/xyhYECUhpRSlGgVTegDaBZHQJbPIOSW7e51fZQoaAZoCWgPQwhypDMwMmtwQJSGlFKUaBVL4WgWR0CWz0Wd3B55dX2UKGgGaAloD0MIIO1/gDVTbUCUhpRSlGgVS/RoFkdAltAMEzO5a3V9lChoBmgJaA9DCJllTwKbHnBAlIaUUpRoFUvvaBZHQJbRAMNMGot1fZQoaAZoCWgPQwjO/dXjPjFuQJSGlFKUaBVL3mgWR0CW0ZBPKuB+dX2UKGgGaAloD0MILJ0Pz5Kib0CUhpRSlGgVTQsBaBZHQJbR4plSS/11fZQoaAZoCWgPQwjEswQZAUhwQJSGlFKUaBVNHwFoFkdAltSzYh+vyXV9lChoBmgJaA9DCLDG2XQEoV1AlIaUUpRoFU3oA2gWR0CW1SpON5t4dX2UKGgGaAloD0MIX5oiwOkTcUCUhpRSlGgVTRoBaBZHQJbVQoc7yQR1fZQoaAZoCWgPQwh6/x8nTGltQJSGlFKUaBVL+2gWR0CW1hXIEKVqdX2UKGgGaAloD0MI+aBns2q5bkCUhpRSlGgVTRIBaBZHQJbWGDpTuOV1fZQoaAZoCWgPQwgVV5V9l7NyQJSGlFKUaBVNNwFoFkdAltZtNi6QNnV9lChoBmgJaA9DCHi4HRoWwm9AlIaUUpRoFUviaBZHQJbWu8CgbqB1fZQoaAZoCWgPQwhyTuyhfeNxQJSGlFKUaBVL/GgWR0CW2CTspobodX2UKGgGaAloD0MIU14roTvLbkCUhpRSlGgVTQ8BaBZHQJbYtVZLZjB1fZQoaAZoCWgPQwjO/GoOkI1wQJSGlFKUaBVL+WgWR0CW2NbpNbkfdX2UKGgGaAloD0MILspskMllcECUhpRSlGgVTRUBaBZHQJbbNTjvNNd1fZQoaAZoCWgPQwj+RGXDmoZwQJSGlFKUaBVNFAFoFkdAltuBsVLzw3V9lChoBmgJaA9DCKs/wjDg/WFAlIaUUpRoFU3oA2gWR0CW3KcbiqACdX2UKGgGaAloD0MIpMSu7S1lcUCUhpRSlGgVS/RoFkdAlt3A3Lmp2nV9lChoBmgJaA9DCDMbZJIRK29AlIaUUpRoFUv/aBZHQJbeFMWXTmZ1fZQoaAZoCWgPQwjP1yyXjShxQJSGlFKUaBVL72gWR0CW3tvmHP/rdX2UKGgGaAloD0MItr+zPfqLbkCUhpRSlGgVTSMBaBZHQJbe+PZIxxl1fZQoaAZoCWgPQwjN5nEYTLduQJSGlFKUaBVNAQFoFkdAlt/hW1c+q3V9lChoBmgJaA9DCKd38X7csERAlIaUUpRoFUvXaBZHQJbgsEV32VV1fZQoaAZoCWgPQwiARunSP15iQJSGlFKUaBVN6ANoFkdAluHwydnTRnV9lChoBmgJaA9DCGUcI9ljqXFAlIaUUpRoFU1SAWgWR0CW4hwvQF9sdX2UKGgGaAloD0MInuv7cFDucECUhpRSlGgVS/hoFkdAluYBbSqlxnV9lChoBmgJaA9DCKoQj8QLe3FAlIaUUpRoFU0kAWgWR0CW5j/vOQhfdX2UKGgGaAloD0MIrizRWWbjZECUhpRSlGgVTegDaBZHQJbnvNKRMex1fZQoaAZoCWgPQwjmO/iJw/pwQJSGlFKUaBVNoQFoFkdAluhkLlV94XV9lChoBmgJaA9DCH8uGjIetUpAlIaUUpRoFUvHaBZHQJbobj6vaDh1fZQoaAZoCWgPQwjjN4WVihNxQJSGlFKUaBVL/2gWR0CW6cfLs8gZdX2UKGgGaAloD0MIE7afjHG6cECUhpRSlGgVTSUBaBZHQJbqLuF6Avt1fZQoaAZoCWgPQwgbu0T1FhJxQJSGlFKUaBVNIgFoFkdAluowGnn+ynV9lChoBmgJaA9DCM+EJomlDnBAlIaUUpRoFUvsaBZHQJbrUVrRBu51fZQoaAZoCWgPQwgbSBebFuJxQJSGlFKUaBVNBQFoFkdAluwQeq7yx3V9lChoBmgJaA9DCICfceHAL3FAlIaUUpRoFUv9aBZHQJbwRKtga3t1fZQoaAZoCWgPQwjpJjEIrDZvQJSGlFKUaBVL42gWR0CW8X4YaYNRdX2UKGgGaAloD0MIVVBR9eseckCUhpRSlGgVTRMBaBZHQJbzvcqOLix1fZQoaAZoCWgPQwgMzApFOiFtQJSGlFKUaBVNBQFoFkdAlvUmSlnAZnV9lChoBmgJaA9DCDQw8rKmwW1AlIaUUpRoFUv4aBZHQJb19WwNb1R1fZQoaAZoCWgPQwhOCvMeJ1JxQJSGlFKUaBVNGQFoFkdAlvYWH58BuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:749a9af1f3191f6ee8e35b1087b3b5968f99e6332ef255bc7cf2341b4056fd5d
|
3 |
+
size 146358
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd987291790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd987291820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd9872918b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd987291940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd9872919d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd987291a60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd987291af0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd987291b80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd987291c10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd987291ca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd987291d30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd9872921b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670958371292155081,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": null,
|
58 |
+
"_last_episode_starts": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_original_obs": null,
|
63 |
+
"_episode_num": 0,
|
64 |
+
"use_sde": false,
|
65 |
+
"sde_sample_freq": -1,
|
66 |
+
"_current_progress_remaining": -0.015808000000000044,
|
67 |
+
"ep_info_buffer": {
|
68 |
+
":type:": "<class 'collections.deque'>",
|
69 |
+
":serialized:": "gAWVVRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB2Fu93LxY0CUhpRSlIwBbJRN6AOMAXSUR0CWOxkMCtA+dX2UKGgGaAloD0MIHF97Zsl7cECUhpRSlGgVTQYBaBZHQJY8kgyM1j11fZQoaAZoCWgPQwgsZoS3R19xQJSGlFKUaBVNDgFoFkdAljysQI2OyXV9lChoBmgJaA9DCHkGDf0TqW9AlIaUUpRoFU0PAWgWR0CWPmWT5ftydX2UKGgGaAloD0MItJPBUTLKcECUhpRSlGgVS/NoFkdAlj7MfvF3p3V9lChoBmgJaA9DCM2xvKse+kFAlIaUUpRoFUvIaBZHQJY/C7Bfrrx1fZQoaAZoCWgPQwjtZdtpK6twQJSGlFKUaBVNGQFoFkdAlj+2vB7/oHV9lChoBmgJaA9DCMkBu5r8u3BAlIaUUpRoFU0BAWgWR0CWQVEuxrzodX2UKGgGaAloD0MISMX/HRFCcECUhpRSlGgVTQ0BaBZHQJZCD+PzWf91fZQoaAZoCWgPQwh+5NakW5BxQJSGlFKUaBVL8mgWR0CWQn4xDb8FdX2UKGgGaAloD0MIsB73rRYtcECUhpRSlGgVS+toFkdAlkTIYR/ViHV9lChoBmgJaA9DCKHYCppWVHBAlIaUUpRoFU1UAWgWR0CWRa9US7GvdX2UKGgGaAloD0MIMLjmjv7WbUCUhpRSlGgVTQcBaBZHQJZFul/H5rR1fZQoaAZoCWgPQwg+Qs2QquRvQJSGlFKUaBVL8mgWR0CWR3gcLjPwdX2UKGgGaAloD0MIEjP7PAbAcUCUhpRSlGgVTRwBaBZHQJZIuPuG9Ht1fZQoaAZoCWgPQwhtj95wHxdiQJSGlFKUaBVN6ANoFkdAlkjKMJhOQHV9lChoBmgJaA9DCIBFfv0QmnFAlIaUUpRoFU0wAWgWR0CWprA6Mir1dX2UKGgGaAloD0MIU5J1OLpccECUhpRSlGgVS/VoFkdAlqfdsenyeHV9lChoBmgJaA9DCMlXAikxP3BAlIaUUpRoFUvfaBZHQJaqMAiml691fZQoaAZoCWgPQwijPV5Ix3ZwQJSGlFKUaBVNUgFoFkdAlqyGYnfEXXV9lChoBmgJaA9DCMgMVMY/ym9AlIaUUpRoFUv8aBZHQJasq35N47l1fZQoaAZoCWgPQwgTDr3FA+xxQJSGlFKUaBVNfAFoFkdAlqzq4H5aeXV9lChoBmgJaA9DCFq3Qe231m5AlIaUUpRoFUvpaBZHQJaty1NQCS11fZQoaAZoCWgPQwhT7GgcaixjQJSGlFKUaBVN6ANoFkdAlq3RLGrCFnV9lChoBmgJaA9DCO2BVmBIaWFAlIaUUpRoFU3oA2gWR0CWreP8AJb/dX2UKGgGaAloD0MIhH8RNCYDcECUhpRSlGgVS/5oFkdAlq/GShakh3V9lChoBmgJaA9DCPkwe9l2mWJAlIaUUpRoFU3oA2gWR0CWsDLUkOZtdX2UKGgGaAloD0MImkARiximb0CUhpRSlGgVTREBaBZHQJawdZq20At1fZQoaAZoCWgPQwjyQGSRpuZtQJSGlFKUaBVNHAFoFkdAlrNVpfx+a3V9lChoBmgJaA9DCPVKWYY4EGxAlIaUUpRoFUvwaBZHQJazw8OkLx91fZQoaAZoCWgPQwjQYFPnUTtxQJSGlFKUaBVL22gWR0CWtRrbg0j1dX2UKGgGaAloD0MI93XgnBHhbkCUhpRSlGgVS/hoFkdAlrYvwd8zAXV9lChoBmgJaA9DCEW94NOcVW5AlIaUUpRoFUv+aBZHQJa3xNlAeJZ1fZQoaAZoCWgPQwgJ+aBnM2JrQJSGlFKUaBVNIAFoFkdAlrhJIUahpXV9lChoBmgJaA9DCOm12ViJ+G5AlIaUUpRoFU06AmgWR0CWuTTrE9+xdX2UKGgGaAloD0MI/IwLB0LDcUCUhpRSlGgVTWcBaBZHQJa8PE61b7l1fZQoaAZoCWgPQwiTjJyFPXZuQJSGlFKUaBVNKwNoFkdAlrx0pRXOnnV9lChoBmgJaA9DCPgYrDjVNGRAlIaUUpRoFU3oA2gWR0CWvJq6e5FxdX2UKGgGaAloD0MIuHcN+hJecECUhpRSlGgVS/9oFkdAlr34AwPAf3V9lChoBmgJaA9DCIqPT8hOA2NAlIaUUpRoFU3oA2gWR0CWvlgU1yeadX2UKGgGaAloD0MIJ/bQPpa5cECUhpRSlGgVTVkBaBZHQJa+a6cy31B1fZQoaAZoCWgPQwieQxmqIg5wQJSGlFKUaBVL8mgWR0CWvx76YVqOdX2UKGgGaAloD0MIiPNwAtOub0CUhpRSlGgVTRYBaBZHQJa/OwA2hqV1fZQoaAZoCWgPQwh7o1aYvtZwQJSGlFKUaBVL6WgWR0CWwYJJXhfjdX2UKGgGaAloD0MI5e/eUWNcb0CUhpRSlGgVS/1oFkdAlsHXZ9NN8HV9lChoBmgJaA9DCFwBhXr6P29AlIaUUpRoFU0tAWgWR0CWxR+RoysTdX2UKGgGaAloD0MIs89jlGckcECUhpRSlGgVS/doFkdAlsYwMUh3aHV9lChoBmgJaA9DCE1nJ4MjJ29AlIaUUpRoFUv+aBZHQJbGV1PnB+F1fZQoaAZoCWgPQwgvTny1I3FxQJSGlFKUaBVL5mgWR0CWx3gOSW7fdX2UKGgGaAloD0MITPxR1JmJb0CUhpRSlGgVS/VoFkdAlseYrBj4H3V9lChoBmgJaA9DCD4kfO9vtG5AlIaUUpRoFUv0aBZHQJbJD6SDAah1fZQoaAZoCWgPQwgVjiCVotlwQJSGlFKUaBVNIAFoFkdAlsnn27FsHnV9lChoBmgJaA9DCIDvNm+cWXFAlIaUUpRoFU0eAWgWR0CWyrFH8TBZdX2UKGgGaAloD0MI4e1BCEh4bkCUhpRSlGgVTZcCaBZHQJbK7zkIX0p1fZQoaAZoCWgPQwi9xi5RvZttQJSGlFKUaBVL/GgWR0CWy945tFa0dX2UKGgGaAloD0MIu3zrw/oIcECUhpRSlGgVTdICaBZHQJbMu+UQkHF1fZQoaAZoCWgPQwgnaf6YFnxxQJSGlFKUaBVL5mgWR0CWzn0CRwIddX2UKGgGaAloD0MISgfr/xyhYECUhpRSlGgVTegDaBZHQJbPIOSW7e51fZQoaAZoCWgPQwhypDMwMmtwQJSGlFKUaBVL4WgWR0CWz0Wd3B55dX2UKGgGaAloD0MIIO1/gDVTbUCUhpRSlGgVS/RoFkdAltAMEzO5a3V9lChoBmgJaA9DCJllTwKbHnBAlIaUUpRoFUvvaBZHQJbRAMNMGot1fZQoaAZoCWgPQwjO/dXjPjFuQJSGlFKUaBVL3mgWR0CW0ZBPKuB+dX2UKGgGaAloD0MILJ0Pz5Kib0CUhpRSlGgVTQsBaBZHQJbR4plSS/11fZQoaAZoCWgPQwjEswQZAUhwQJSGlFKUaBVNHwFoFkdAltSzYh+vyXV9lChoBmgJaA9DCLDG2XQEoV1AlIaUUpRoFU3oA2gWR0CW1SpON5t4dX2UKGgGaAloD0MIX5oiwOkTcUCUhpRSlGgVTRoBaBZHQJbVQoc7yQR1fZQoaAZoCWgPQwh6/x8nTGltQJSGlFKUaBVL+2gWR0CW1hXIEKVqdX2UKGgGaAloD0MI+aBns2q5bkCUhpRSlGgVTRIBaBZHQJbWGDpTuOV1fZQoaAZoCWgPQwgVV5V9l7NyQJSGlFKUaBVNNwFoFkdAltZtNi6QNnV9lChoBmgJaA9DCHi4HRoWwm9AlIaUUpRoFUviaBZHQJbWu8CgbqB1fZQoaAZoCWgPQwhyTuyhfeNxQJSGlFKUaBVL/GgWR0CW2CTspobodX2UKGgGaAloD0MIU14roTvLbkCUhpRSlGgVTQ8BaBZHQJbYtVZLZjB1fZQoaAZoCWgPQwjO/GoOkI1wQJSGlFKUaBVL+WgWR0CW2NbpNbkfdX2UKGgGaAloD0MILspskMllcECUhpRSlGgVTRUBaBZHQJbbNTjvNNd1fZQoaAZoCWgPQwj+RGXDmoZwQJSGlFKUaBVNFAFoFkdAltuBsVLzw3V9lChoBmgJaA9DCKs/wjDg/WFAlIaUUpRoFU3oA2gWR0CW3KcbiqACdX2UKGgGaAloD0MIpMSu7S1lcUCUhpRSlGgVS/RoFkdAlt3A3Lmp2nV9lChoBmgJaA9DCDMbZJIRK29AlIaUUpRoFUv/aBZHQJbeFMWXTmZ1fZQoaAZoCWgPQwjP1yyXjShxQJSGlFKUaBVL72gWR0CW3tvmHP/rdX2UKGgGaAloD0MItr+zPfqLbkCUhpRSlGgVTSMBaBZHQJbe+PZIxxl1fZQoaAZoCWgPQwjN5nEYTLduQJSGlFKUaBVNAQFoFkdAlt/hW1c+q3V9lChoBmgJaA9DCKd38X7csERAlIaUUpRoFUvXaBZHQJbgsEV32VV1fZQoaAZoCWgPQwiARunSP15iQJSGlFKUaBVN6ANoFkdAluHwydnTRnV9lChoBmgJaA9DCGUcI9ljqXFAlIaUUpRoFU1SAWgWR0CW4hwvQF9sdX2UKGgGaAloD0MInuv7cFDucECUhpRSlGgVS/hoFkdAluYBbSqlxnV9lChoBmgJaA9DCKoQj8QLe3FAlIaUUpRoFU0kAWgWR0CW5j/vOQhfdX2UKGgGaAloD0MIrizRWWbjZECUhpRSlGgVTegDaBZHQJbnvNKRMex1fZQoaAZoCWgPQwjmO/iJw/pwQJSGlFKUaBVNoQFoFkdAluhkLlV94XV9lChoBmgJaA9DCH8uGjIetUpAlIaUUpRoFUvHaBZHQJbobj6vaDh1fZQoaAZoCWgPQwjjN4WVihNxQJSGlFKUaBVL/2gWR0CW6cfLs8gZdX2UKGgGaAloD0MIE7afjHG6cECUhpRSlGgVTSUBaBZHQJbqLuF6Avt1fZQoaAZoCWgPQwgbu0T1FhJxQJSGlFKUaBVNIgFoFkdAluowGnn+ynV9lChoBmgJaA9DCM+EJomlDnBAlIaUUpRoFUvsaBZHQJbrUVrRBu51fZQoaAZoCWgPQwgbSBebFuJxQJSGlFKUaBVNBQFoFkdAluwQeq7yx3V9lChoBmgJaA9DCICfceHAL3FAlIaUUpRoFUv9aBZHQJbwRKtga3t1fZQoaAZoCWgPQwjpJjEIrDZvQJSGlFKUaBVL42gWR0CW8X4YaYNRdX2UKGgGaAloD0MIVVBR9eseckCUhpRSlGgVTRMBaBZHQJbzvcqOLix1fZQoaAZoCWgPQwgMzApFOiFtQJSGlFKUaBVNBQFoFkdAlvUmSlnAZnV9lChoBmgJaA9DCDQw8rKmwW1AlIaUUpRoFUv4aBZHQJb19WwNb1R1fZQoaAZoCWgPQwhOCvMeJ1JxQJSGlFKUaBVNGQFoFkdAlvYWH58BuHVlLg=="
|
70 |
+
},
|
71 |
+
"ep_success_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
74 |
+
},
|
75 |
+
"_n_updates": 310,
|
76 |
+
"n_steps": 2048,
|
77 |
+
"gamma": 0.99,
|
78 |
+
"gae_lambda": 0.95,
|
79 |
+
"ent_coef": 0.0,
|
80 |
+
"vf_coef": 0.5,
|
81 |
+
"max_grad_norm": 0.5,
|
82 |
+
"batch_size": 64,
|
83 |
+
"n_epochs": 10,
|
84 |
+
"clip_range": {
|
85 |
+
":type:": "<class 'function'>",
|
86 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
87 |
+
},
|
88 |
+
"clip_range_vf": null,
|
89 |
+
"normalize_advantage": true,
|
90 |
+
"target_kl": null
|
91 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65ca93b9eb62c98018ebc4557ae67ea765e5baab859894078f5dcf92cd597e4d
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5001777a85f02b4e60b45c02bab320b38339dec0ea70083fecab7a08e5068d18
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (218 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 246.39111807714949, "std_reward": 16.619511697688324, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T19:31:13.175630"}
|