File size: 1,830 Bytes
45a25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: roberta-base-finetuned-wls-manual-10ep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-finetuned-wls-manual-10ep

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0599

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.8201        | 0.93  | 7    | 1.5286          |
| 1.4462        | 2.0   | 15   | 1.3480          |
| 1.3032        | 2.93  | 22   | 1.3377          |
| 1.2564        | 4.0   | 30   | 1.1907          |
| 1.246         | 4.93  | 37   | 1.1702          |
| 1.1777        | 6.0   | 45   | 1.1549          |
| 1.118         | 6.93  | 52   | 1.0611          |
| 1.1339        | 8.0   | 60   | 1.1084          |
| 1.1158        | 8.93  | 67   | 1.1376          |
| 1.0143        | 9.33  | 70   | 1.1225          |


### Framework versions

- Transformers 4.31.0
- Pytorch 1.11.0+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3