|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" BTLM configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"cerebras/btlm-3b-8k-base": "https://huggingface.co/cerebras/btlm-3b-8k-base/resolve/main/config.json", |
|
} |
|
|
|
|
|
class BTLMConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`BTLMModel`]. It is used to instantiate a BTLM |
|
model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50257): |
|
Vocabulary size of the BTLM model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`BTLMModel`]. |
|
n_positions (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_inner (`int`, *optional*, defaults to None): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
activation_function (`str`, *optional*, defaults to `"gelu"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new", "swiglu"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
scale_attn_weights (`bool`, *optional*, defaults to `True`): |
|
Scale attention weights by dividing by sqrt(hidden_size).. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): |
|
Whether to additionally scale attention weights by `1 / layer_idx + 1`. |
|
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): |
|
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention |
|
dot-product/softmax to float() when training with mixed precision. |
|
position_embedding_type (`str`, *optional*, defaults to `"learned"`): |
|
Positional embedding can be either `"alibi"` or `"learned"`. |
|
mup_width_scale (`float`, *optional*, defaults to 1.0): |
|
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where |
|
`d_model` is the model's width and `d_model,0` is the proxy model's width. |
|
mup_embeddings_scale (`float`, *optional*, defaults to 1.0): |
|
muP parameter to scale token and position embeddings. |
|
mup_output_alpha (`float`, *optional*, defaults to 1.0): |
|
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`). |
|
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`): |
|
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set |
|
scale_attn_weights to `True` as well. |
|
alibi_scaling (`Dict`, *optional*): |
|
Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear |
|
scaling strategy. Can specify either the scaling `factor` (must be a float greater than 1) for fixed scaling |
|
or `train_seq_len` for dynamic scaling on input samples with sequence length > `train_seq_len`. The expected |
|
formats are `{"type": strategy name, "factor": scaling factor}` or |
|
`{"type": strategy name, "train_seq_len": training sequence length}`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import BTLMConfig, BTLMModel |
|
|
|
>>> # Initializing a BTLM configuration |
|
>>> configuration = BTLMConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = BTLMModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "btlm" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"hidden_size": "n_embd", |
|
"max_position_embeddings": "n_positions", |
|
"num_attention_heads": "n_head", |
|
"num_hidden_layers": "n_layer", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50257, |
|
n_positions=1024, |
|
n_embd=768, |
|
n_layer=12, |
|
n_head=12, |
|
n_inner=None, |
|
activation_function="gelu_new", |
|
resid_pdrop=0.1, |
|
embd_pdrop=0.1, |
|
attn_pdrop=0.1, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
scale_attn_weights=True, |
|
use_cache=True, |
|
bos_token_id=50256, |
|
eos_token_id=50256, |
|
scale_attn_by_inverse_layer_idx=False, |
|
reorder_and_upcast_attn=False, |
|
position_embedding_type="learned", |
|
mup_width_scale=1.0, |
|
mup_embeddings_scale=1.0, |
|
mup_output_alpha=1.0, |
|
mup_scale_qk_dot_by_d=False, |
|
alibi_scaling=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.n_positions = n_positions |
|
self.n_embd = n_embd |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.n_inner = n_inner |
|
self.activation_function = activation_function |
|
self.resid_pdrop = resid_pdrop |
|
self.embd_pdrop = embd_pdrop |
|
self.attn_pdrop = attn_pdrop |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.scale_attn_weights = scale_attn_weights |
|
self.use_cache = use_cache |
|
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx |
|
self.reorder_and_upcast_attn = reorder_and_upcast_attn |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
self.position_embedding_type = position_embedding_type |
|
self.mup_width_scale = mup_width_scale |
|
self.mup_embeddings_scale = mup_embeddings_scale |
|
self.mup_output_alpha = mup_output_alpha |
|
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d |
|
|
|
self.alibi_scaling = alibi_scaling |
|
self._alibi_scaling_validation() |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
def _alibi_scaling_validation(self): |
|
""" |
|
Validate the `alibi_scaling` configuration. |
|
""" |
|
if self.alibi_scaling is None: |
|
return |
|
|
|
if not isinstance(self.alibi_scaling, dict) or len(self.alibi_scaling) != 2: |
|
raise ValueError( |
|
"`alibi_scaling` must be a dictionary with two fields, `type` and `factor` or `type` and `train_seq_len`, " |
|
f"got {self.alibi_scaling}" |
|
) |
|
alibi_scaling_type = self.alibi_scaling.get("type", None) |
|
alibi_scaling_factor = self.alibi_scaling.get("factor", None) |
|
alibi_dynamic_scaling = self.alibi_scaling.get("train_seq_len", None) |
|
if alibi_scaling_type is None or alibi_scaling_type != "linear": |
|
raise ValueError( |
|
f"`alibi_scaling`'s type field must be 'linear', got {alibi_scaling_type}" |
|
) |
|
if alibi_scaling_factor is not None: |
|
if not isinstance(alibi_scaling_factor, float) or alibi_scaling_factor <= 1.0: |
|
raise ValueError(f"`alibi_scaling`'s factor field must be a float > 1.0, got {alibi_scaling_factor}") |
|
if alibi_dynamic_scaling is not None: |
|
if not isinstance(alibi_dynamic_scaling, int) or alibi_dynamic_scaling <= 1: |
|
raise ValueError(f"`alibi_scaling`'s `train_seq_len` field must be an integer > 1, got {alibi_dynamic_scaling}") |
|
|