commit message
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- 202311100214.log +0 -0
- README copy.md +58 -0
- adapter_config.json +22 -0
- adapter_model.bin +3 -0
- added_tokens.json +4 -0
- all_results.json +7 -0
- checkpoint-1000/README.md +207 -0
- checkpoint-1000/adapter_config.json +22 -0
- checkpoint-1000/adapter_model.bin +3 -0
- checkpoint-1000/added_tokens.json +4 -0
- checkpoint-1000/optimizer.pt +3 -0
- checkpoint-1000/rng_state_0.pth +3 -0
- checkpoint-1000/rng_state_1.pth +3 -0
- checkpoint-1000/rng_state_2.pth +3 -0
- checkpoint-1000/rng_state_3.pth +3 -0
- checkpoint-1000/rng_state_4.pth +3 -0
- checkpoint-1000/rng_state_5.pth +3 -0
- checkpoint-1000/rng_state_6.pth +3 -0
- checkpoint-1000/rng_state_7.pth +3 -0
- checkpoint-1000/scheduler.pt +3 -0
- checkpoint-1000/special_tokens_map.json +6 -0
- checkpoint-1000/tokenization_chatglm.py +283 -0
- checkpoint-1000/tokenizer.model +3 -0
- checkpoint-1000/tokenizer_config.json +38 -0
- checkpoint-1000/trainer_state.json +619 -0
- checkpoint-1000/training_args.bin +3 -0
- checkpoint-1200/README.md +207 -0
- checkpoint-1200/adapter_config.json +22 -0
- checkpoint-1200/adapter_model.bin +3 -0
- checkpoint-1200/added_tokens.json +4 -0
- checkpoint-1200/optimizer.pt +3 -0
- checkpoint-1200/rng_state_0.pth +3 -0
- checkpoint-1200/rng_state_1.pth +3 -0
- checkpoint-1200/rng_state_2.pth +3 -0
- checkpoint-1200/rng_state_3.pth +3 -0
- checkpoint-1200/rng_state_4.pth +3 -0
- checkpoint-1200/rng_state_5.pth +3 -0
- checkpoint-1200/rng_state_6.pth +3 -0
- checkpoint-1200/rng_state_7.pth +3 -0
- checkpoint-1200/scheduler.pt +3 -0
- checkpoint-1200/special_tokens_map.json +6 -0
- checkpoint-1200/tokenization_chatglm.py +283 -0
- checkpoint-1200/tokenizer.model +3 -0
- checkpoint-1200/tokenizer_config.json +38 -0
- checkpoint-1200/trainer_state.json +739 -0
- checkpoint-1200/training_args.bin +3 -0
- checkpoint-1400/README.md +207 -0
- checkpoint-1400/adapter_config.json +22 -0
- checkpoint-1400/adapter_model.bin +3 -0
- checkpoint-1400/added_tokens.json +4 -0
202311100214.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README copy.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /home/hz/projects/chatglm3-6b-32k
|
3 |
+
tags:
|
4 |
+
- llama-factory
|
5 |
+
- lora
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: chatglm3-6b-32k-wenshu-finetuned
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# chatglm3-6b-32k-wenshu-finetuned
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [/home/hz/projects/chatglm3-6b-32k](https://huggingface.co//home/hz/projects/chatglm3-6b-32k) on the wenshu_dataset dataset.
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 4
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- distributed_type: multi-GPU
|
41 |
+
- num_devices: 8
|
42 |
+
- gradient_accumulation_steps: 8
|
43 |
+
- total_train_batch_size: 256
|
44 |
+
- total_eval_batch_size: 64
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: cosine
|
47 |
+
- num_epochs: 3.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
### Framework versions
|
54 |
+
|
55 |
+
- Transformers 4.34.0
|
56 |
+
- Pytorch 2.0.1+cu117
|
57 |
+
- Datasets 2.14.6
|
58 |
+
- Tokenizers 0.14.1
|
adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/hz/projects/chatglm3-6b-32k",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"query_key_value"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3346e13155c0d39280e75d07fe63bd525777020def5c6512c3907aaea14da10
|
3 |
+
size 7820185
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|observation|>": 64797,
|
3 |
+
"<|user|>": 64795
|
4 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.40742741023141216,
|
4 |
+
"train_runtime": 104521.3326,
|
5 |
+
"train_samples_per_second": 10.964,
|
6 |
+
"train_steps_per_second": 0.043
|
7 |
+
}
|
checkpoint-1000/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /home/hz/projects/chatglm3-6b-32k
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.1
|
checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/hz/projects/chatglm3-6b-32k",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"query_key_value"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
checkpoint-1000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3342fe0de43a1853b1fdaad882567a452ec747c7bb392a7e5e2a88c0a939cc11
|
3 |
+
size 7820185
|
checkpoint-1000/added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|observation|>": 64797,
|
3 |
+
"<|user|>": 64795
|
4 |
+
}
|
checkpoint-1000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3badd333c7c2ea3bb2494882b036831b3692efddb08fe380c12ae793f7d5d63
|
3 |
+
size 15644485
|
checkpoint-1000/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1060624c7954c3b286c1948a1dd5e1ce39c497aee826b7f77f55576e5309b4c3
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28602630f9bf652c63fca7559b6f34e3236d16cb19a88e14b1ae9abc3f89b7c6
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:331d1c16c6e5f215989b0d4f6f031cadc6c60d030a502ce8c93d000b402b8ad4
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36b8b18dff0d9c7fa865aa16e2d89c59d88fad7d0bc2a1589c8a7cd422051ac8
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e607493ac32d6d104991335c8909b9165d6475b6001cfd544a15a014fb21aaef
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91e8dbba9f0531a6db2b77df4458c926e4f57aa448d6fc5ef1918429d742736
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34901406783e82c1f339065211640375722456aa206f399ee541b75f44a6a3a1
|
3 |
+
size 21687
|
checkpoint-1000/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22decdcd459d4cbd6fb83a5afd8d9e6edec7ee066069d318782fde025ca4c4de
|
3 |
+
size 21687
|
checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:707b10eb98685e357773ca2125e0d6c1c1de2a1c4e7ededd34ea00989b0b159a
|
3 |
+
size 627
|
checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|user|>",
|
4 |
+
"<|observation|>"
|
5 |
+
]
|
6 |
+
}
|
checkpoint-1000/tokenization_chatglm.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from typing import List, Optional, Union, Dict
|
5 |
+
from sentencepiece import SentencePieceProcessor
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging, PaddingStrategy
|
8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
+
|
10 |
+
|
11 |
+
class SPTokenizer:
|
12 |
+
def __init__(self, model_path: str):
|
13 |
+
# reload tokenizer
|
14 |
+
assert os.path.isfile(model_path), model_path
|
15 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
+
|
17 |
+
# BOS / EOS token IDs
|
18 |
+
self.n_words: int = self.sp_model.vocab_size()
|
19 |
+
self.bos_id: int = self.sp_model.bos_id()
|
20 |
+
self.eos_id: int = self.sp_model.eos_id()
|
21 |
+
self.pad_id: int = self.sp_model.unk_id()
|
22 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
+
|
24 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop", "<|system|>", "<|user|>", "<|assistant|>",
|
25 |
+
"<|observation|>"]
|
26 |
+
self.special_tokens = {}
|
27 |
+
self.index_special_tokens = {}
|
28 |
+
for token in special_tokens:
|
29 |
+
self.special_tokens[token] = self.n_words
|
30 |
+
self.index_special_tokens[self.n_words] = token
|
31 |
+
self.n_words += 1
|
32 |
+
|
33 |
+
def tokenize(self, s: str):
|
34 |
+
return self.sp_model.EncodeAsPieces(s)
|
35 |
+
|
36 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
37 |
+
assert type(s) is str
|
38 |
+
t = self.sp_model.encode(s)
|
39 |
+
if bos:
|
40 |
+
t = [self.bos_id] + t
|
41 |
+
if eos:
|
42 |
+
t = t + [self.eos_id]
|
43 |
+
return t
|
44 |
+
|
45 |
+
def decode(self, t: List[int]) -> str:
|
46 |
+
text, buffer = "", []
|
47 |
+
for token in t:
|
48 |
+
if token in self.index_special_tokens:
|
49 |
+
if buffer:
|
50 |
+
text += self.sp_model.decode(buffer)
|
51 |
+
buffer = []
|
52 |
+
text += self.index_special_tokens[token]
|
53 |
+
else:
|
54 |
+
buffer.append(token)
|
55 |
+
if buffer:
|
56 |
+
text += self.sp_model.decode(buffer)
|
57 |
+
return text
|
58 |
+
|
59 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
60 |
+
text = self.sp_model.DecodePieces(tokens)
|
61 |
+
return text
|
62 |
+
|
63 |
+
def convert_token_to_id(self, token):
|
64 |
+
""" Converts a token (str) in an id using the vocab. """
|
65 |
+
if token in self.special_tokens:
|
66 |
+
return self.special_tokens[token]
|
67 |
+
return self.sp_model.PieceToId(token)
|
68 |
+
|
69 |
+
def convert_id_to_token(self, index):
|
70 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
71 |
+
if index in self.index_special_tokens:
|
72 |
+
return self.index_special_tokens[index]
|
73 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
74 |
+
return ""
|
75 |
+
return self.sp_model.IdToPiece(index)
|
76 |
+
|
77 |
+
|
78 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
79 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
80 |
+
|
81 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
82 |
+
|
83 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
84 |
+
self.name = "GLMTokenizer"
|
85 |
+
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
88 |
+
self.special_tokens = {
|
89 |
+
"<bos>": self.tokenizer.bos_id,
|
90 |
+
"<eos>": self.tokenizer.eos_id,
|
91 |
+
"<pad>": self.tokenizer.pad_id
|
92 |
+
}
|
93 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
94 |
+
|
95 |
+
def get_command(self, token):
|
96 |
+
if token in self.special_tokens:
|
97 |
+
return self.special_tokens[token]
|
98 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
99 |
+
return self.tokenizer.special_tokens[token]
|
100 |
+
|
101 |
+
@property
|
102 |
+
def unk_token(self) -> str:
|
103 |
+
return "<unk>"
|
104 |
+
|
105 |
+
@property
|
106 |
+
def pad_token(self) -> str:
|
107 |
+
return "<unk>"
|
108 |
+
|
109 |
+
@property
|
110 |
+
def pad_token_id(self):
|
111 |
+
return self.get_command("<pad>")
|
112 |
+
|
113 |
+
@property
|
114 |
+
def eos_token(self) -> str:
|
115 |
+
return "</s>"
|
116 |
+
|
117 |
+
@property
|
118 |
+
def eos_token_id(self):
|
119 |
+
return self.get_command("<eos>")
|
120 |
+
|
121 |
+
@property
|
122 |
+
def vocab_size(self):
|
123 |
+
return self.tokenizer.n_words
|
124 |
+
|
125 |
+
def get_vocab(self):
|
126 |
+
""" Returns vocab as a dict """
|
127 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
128 |
+
vocab.update(self.added_tokens_encoder)
|
129 |
+
return vocab
|
130 |
+
|
131 |
+
def _tokenize(self, text, **kwargs):
|
132 |
+
return self.tokenizer.tokenize(text)
|
133 |
+
|
134 |
+
def _convert_token_to_id(self, token):
|
135 |
+
""" Converts a token (str) in an id using the vocab. """
|
136 |
+
return self.tokenizer.convert_token_to_id(token)
|
137 |
+
|
138 |
+
def _convert_id_to_token(self, index):
|
139 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
140 |
+
return self.tokenizer.convert_id_to_token(index)
|
141 |
+
|
142 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
143 |
+
return self.tokenizer.decode_tokens(tokens)
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
filename_prefix (`str`, *optional*):
|
153 |
+
An optional prefix to add to the named of the saved files.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
`Tuple(str)`: Paths to the files saved.
|
157 |
+
"""
|
158 |
+
if os.path.isdir(save_directory):
|
159 |
+
vocab_file = os.path.join(
|
160 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
vocab_file = save_directory
|
164 |
+
|
165 |
+
with open(self.vocab_file, 'rb') as fin:
|
166 |
+
proto_str = fin.read()
|
167 |
+
|
168 |
+
with open(vocab_file, "wb") as writer:
|
169 |
+
writer.write(proto_str)
|
170 |
+
|
171 |
+
return (vocab_file,)
|
172 |
+
|
173 |
+
def get_prefix_tokens(self):
|
174 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
175 |
+
return prefix_tokens
|
176 |
+
|
177 |
+
def build_single_message(self, role, metadata, message):
|
178 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
179 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
180 |
+
message_tokens = self.tokenizer.encode(message)
|
181 |
+
tokens = role_tokens + message_tokens
|
182 |
+
return tokens
|
183 |
+
|
184 |
+
def build_chat_input(self, query, history=None, role="user"):
|
185 |
+
if history is None:
|
186 |
+
history = []
|
187 |
+
input_ids = []
|
188 |
+
for item in history:
|
189 |
+
content = item["content"]
|
190 |
+
if item["role"] == "system" and "tools" in item:
|
191 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
192 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
193 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
194 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
195 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
196 |
+
|
197 |
+
def build_inputs_with_special_tokens(
|
198 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
199 |
+
) -> List[int]:
|
200 |
+
"""
|
201 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
202 |
+
adding special tokens. A BERT sequence has the following format:
|
203 |
+
|
204 |
+
- single sequence: `[CLS] X [SEP]`
|
205 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
206 |
+
|
207 |
+
Args:
|
208 |
+
token_ids_0 (`List[int]`):
|
209 |
+
List of IDs to which the special tokens will be added.
|
210 |
+
token_ids_1 (`List[int]`, *optional*):
|
211 |
+
Optional second list of IDs for sequence pairs.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
215 |
+
"""
|
216 |
+
prefix_tokens = self.get_prefix_tokens()
|
217 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
218 |
+
if token_ids_1 is not None:
|
219 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
220 |
+
return token_ids_0
|
221 |
+
|
222 |
+
def _pad(
|
223 |
+
self,
|
224 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
225 |
+
max_length: Optional[int] = None,
|
226 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
227 |
+
pad_to_multiple_of: Optional[int] = None,
|
228 |
+
return_attention_mask: Optional[bool] = None,
|
229 |
+
) -> dict:
|
230 |
+
"""
|
231 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
232 |
+
|
233 |
+
Args:
|
234 |
+
encoded_inputs:
|
235 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
236 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
237 |
+
Will truncate by taking into account the special tokens.
|
238 |
+
padding_strategy: PaddingStrategy to use for padding.
|
239 |
+
|
240 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
241 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
242 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
243 |
+
The tokenizer padding sides are defined in self.padding_side:
|
244 |
+
|
245 |
+
- 'left': pads on the left of the sequences
|
246 |
+
- 'right': pads on the right of the sequences
|
247 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
248 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
249 |
+
`>= 7.5` (Volta).
|
250 |
+
return_attention_mask:
|
251 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
252 |
+
"""
|
253 |
+
# Load from model defaults
|
254 |
+
assert self.padding_side == "left"
|
255 |
+
|
256 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
257 |
+
seq_length = len(required_input)
|
258 |
+
|
259 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
260 |
+
max_length = len(required_input)
|
261 |
+
|
262 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
263 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
264 |
+
|
265 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
266 |
+
|
267 |
+
# Initialize attention mask if not present.
|
268 |
+
if "attention_mask" not in encoded_inputs:
|
269 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
270 |
+
|
271 |
+
if "position_ids" not in encoded_inputs:
|
272 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
273 |
+
|
274 |
+
if needs_to_be_padded:
|
275 |
+
difference = max_length - len(required_input)
|
276 |
+
|
277 |
+
if "attention_mask" in encoded_inputs:
|
278 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
279 |
+
if "position_ids" in encoded_inputs:
|
280 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
281 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
282 |
+
|
283 |
+
return encoded_inputs
|
checkpoint-1000/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"64795": {
|
4 |
+
"content": "<|user|>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"64797": {
|
12 |
+
"content": "<|observation|>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"additional_special_tokens": [
|
21 |
+
"<|user|>",
|
22 |
+
"<|observation|>"
|
23 |
+
],
|
24 |
+
"auto_map": {
|
25 |
+
"AutoTokenizer": [
|
26 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
+
null
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"clean_up_tokenization_spaces": false,
|
31 |
+
"do_lower_case": false,
|
32 |
+
"model_max_length": 1000000000000000019884624838656,
|
33 |
+
"padding_side": "right",
|
34 |
+
"remove_space": false,
|
35 |
+
"split_special_tokens": false,
|
36 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
37 |
+
"tokenizer_file": null
|
38 |
+
}
|
checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.6701289998324678,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.99993842168232e-05,
|
14 |
+
"loss": 1.2211,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 4.9997536897627915e-05,
|
20 |
+
"loss": 1.0276,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 4.9994458133418e-05,
|
26 |
+
"loss": 0.8587,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.999014807586154e-05,
|
32 |
+
"loss": 0.7431,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 4.9984606937283405e-05,
|
38 |
+
"loss": 0.6841,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.04,
|
43 |
+
"learning_rate": 4.9977834990654804e-05,
|
44 |
+
"loss": 0.6452,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.05,
|
49 |
+
"learning_rate": 4.99698325695798e-05,
|
50 |
+
"loss": 0.6347,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05,
|
55 |
+
"learning_rate": 4.9960600068278876e-05,
|
56 |
+
"loss": 0.6109,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.06,
|
61 |
+
"learning_rate": 4.995013794156957e-05,
|
62 |
+
"loss": 0.5911,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.07,
|
67 |
+
"learning_rate": 4.993844670484401e-05,
|
68 |
+
"loss": 0.5803,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07,
|
73 |
+
"learning_rate": 4.992552693404354e-05,
|
74 |
+
"loss": 0.5902,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.08,
|
79 |
+
"learning_rate": 4.991137926563036e-05,
|
80 |
+
"loss": 0.5745,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.09,
|
85 |
+
"learning_rate": 4.9896004396556176e-05,
|
86 |
+
"loss": 0.5538,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.09,
|
91 |
+
"learning_rate": 4.987940308422783e-05,
|
92 |
+
"loss": 0.5495,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.1,
|
97 |
+
"learning_rate": 4.986157614647005e-05,
|
98 |
+
"loss": 0.5433,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.11,
|
103 |
+
"learning_rate": 4.984252446148508e-05,
|
104 |
+
"loss": 0.548,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.11,
|
109 |
+
"learning_rate": 4.98222489678095e-05,
|
110 |
+
"loss": 0.5361,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.12,
|
115 |
+
"learning_rate": 4.980075066426796e-05,
|
116 |
+
"loss": 0.5331,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.13,
|
121 |
+
"learning_rate": 4.977803060992393e-05,
|
122 |
+
"loss": 0.53,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.13,
|
127 |
+
"learning_rate": 4.97540899240276e-05,
|
128 |
+
"loss": 0.5135,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.14,
|
133 |
+
"learning_rate": 4.972892978596069e-05,
|
134 |
+
"loss": 0.5101,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.15,
|
139 |
+
"learning_rate": 4.970255143517838e-05,
|
140 |
+
"loss": 0.5125,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.15,
|
145 |
+
"learning_rate": 4.967495617114826e-05,
|
146 |
+
"loss": 0.4928,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.16,
|
151 |
+
"learning_rate": 4.964614535328626e-05,
|
152 |
+
"loss": 0.4878,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.17,
|
157 |
+
"learning_rate": 4.961612040088973e-05,
|
158 |
+
"loss": 0.5017,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.17,
|
163 |
+
"learning_rate": 4.9584882793067534e-05,
|
164 |
+
"loss": 0.4863,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.18,
|
169 |
+
"learning_rate": 4.955243406866713e-05,
|
170 |
+
"loss": 0.4847,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.19,
|
175 |
+
"learning_rate": 4.951877582619881e-05,
|
176 |
+
"loss": 0.4868,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.19,
|
181 |
+
"learning_rate": 4.948390972375694e-05,
|
182 |
+
"loss": 0.4748,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.2,
|
187 |
+
"learning_rate": 4.944783747893825e-05,
|
188 |
+
"loss": 0.4764,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.21,
|
193 |
+
"learning_rate": 4.941056086875727e-05,
|
194 |
+
"loss": 0.4712,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.21,
|
199 |
+
"learning_rate": 4.937208172955876e-05,
|
200 |
+
"loss": 0.4642,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.22,
|
205 |
+
"learning_rate": 4.9332401956927224e-05,
|
206 |
+
"loss": 0.4642,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.23,
|
211 |
+
"learning_rate": 4.9291523505593604e-05,
|
212 |
+
"loss": 0.4709,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.23,
|
217 |
+
"learning_rate": 4.9249448389338905e-05,
|
218 |
+
"loss": 0.461,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.24,
|
223 |
+
"learning_rate": 4.920617868089501e-05,
|
224 |
+
"loss": 0.4677,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.25,
|
229 |
+
"learning_rate": 4.9161716511842614e-05,
|
230 |
+
"loss": 0.4564,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.25,
|
235 |
+
"learning_rate": 4.911606407250617e-05,
|
236 |
+
"loss": 0.4663,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.26,
|
241 |
+
"learning_rate": 4.9069223611846014e-05,
|
242 |
+
"loss": 0.4682,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.27,
|
247 |
+
"learning_rate": 4.9021197437347555e-05,
|
248 |
+
"loss": 0.4636,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.27,
|
253 |
+
"learning_rate": 4.897198791490762e-05,
|
254 |
+
"loss": 0.4569,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.28,
|
259 |
+
"learning_rate": 4.8921597468717887e-05,
|
260 |
+
"loss": 0.462,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.29,
|
265 |
+
"learning_rate": 4.887002858114548e-05,
|
266 |
+
"loss": 0.4563,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.29,
|
271 |
+
"learning_rate": 4.881728379261068e-05,
|
272 |
+
"loss": 0.4563,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.3,
|
277 |
+
"learning_rate": 4.876336570146175e-05,
|
278 |
+
"loss": 0.4468,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.31,
|
283 |
+
"learning_rate": 4.870827696384698e-05,
|
284 |
+
"loss": 0.4508,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.31,
|
289 |
+
"learning_rate": 4.865202029358379e-05,
|
290 |
+
"loss": 0.4507,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.32,
|
295 |
+
"learning_rate": 4.859459846202507e-05,
|
296 |
+
"loss": 0.4486,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.33,
|
301 |
+
"learning_rate": 4.853601429792265e-05,
|
302 |
+
"loss": 0.4423,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.34,
|
307 |
+
"learning_rate": 4.847627068728795e-05,
|
308 |
+
"loss": 0.4369,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.34,
|
313 |
+
"learning_rate": 4.841537057324979e-05,
|
314 |
+
"loss": 0.4429,
|
315 |
+
"step": 510
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.35,
|
319 |
+
"learning_rate": 4.835331695590943e-05,
|
320 |
+
"loss": 0.4389,
|
321 |
+
"step": 520
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.36,
|
325 |
+
"learning_rate": 4.829011289219276e-05,
|
326 |
+
"loss": 0.44,
|
327 |
+
"step": 530
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.36,
|
331 |
+
"learning_rate": 4.82257614956997e-05,
|
332 |
+
"loss": 0.4476,
|
333 |
+
"step": 540
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.37,
|
337 |
+
"learning_rate": 4.816026593655085e-05,
|
338 |
+
"loss": 0.4367,
|
339 |
+
"step": 550
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.38,
|
343 |
+
"learning_rate": 4.809362944123129e-05,
|
344 |
+
"loss": 0.4357,
|
345 |
+
"step": 560
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.38,
|
349 |
+
"learning_rate": 4.802585529243164e-05,
|
350 |
+
"loss": 0.4492,
|
351 |
+
"step": 570
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.39,
|
355 |
+
"learning_rate": 4.795694682888635e-05,
|
356 |
+
"loss": 0.4403,
|
357 |
+
"step": 580
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.4,
|
361 |
+
"learning_rate": 4.7886907445209234e-05,
|
362 |
+
"loss": 0.4406,
|
363 |
+
"step": 590
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.4,
|
367 |
+
"learning_rate": 4.781574059172621e-05,
|
368 |
+
"loss": 0.4317,
|
369 |
+
"step": 600
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.41,
|
373 |
+
"learning_rate": 4.7743449774305386e-05,
|
374 |
+
"loss": 0.4379,
|
375 |
+
"step": 610
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.42,
|
379 |
+
"learning_rate": 4.7670038554184296e-05,
|
380 |
+
"loss": 0.4324,
|
381 |
+
"step": 620
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.42,
|
385 |
+
"learning_rate": 4.7595510547794465e-05,
|
386 |
+
"loss": 0.4329,
|
387 |
+
"step": 630
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.43,
|
391 |
+
"learning_rate": 4.751986942658332e-05,
|
392 |
+
"loss": 0.4259,
|
393 |
+
"step": 640
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.44,
|
397 |
+
"learning_rate": 4.744311891683325e-05,
|
398 |
+
"loss": 0.4256,
|
399 |
+
"step": 650
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.44,
|
403 |
+
"learning_rate": 4.736526279947807e-05,
|
404 |
+
"loss": 0.4289,
|
405 |
+
"step": 660
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.45,
|
409 |
+
"learning_rate": 4.728630490991676e-05,
|
410 |
+
"loss": 0.4353,
|
411 |
+
"step": 670
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.46,
|
415 |
+
"learning_rate": 4.7206249137824535e-05,
|
416 |
+
"loss": 0.4413,
|
417 |
+
"step": 680
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.46,
|
421 |
+
"learning_rate": 4.7125099426961185e-05,
|
422 |
+
"loss": 0.4302,
|
423 |
+
"step": 690
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.47,
|
427 |
+
"learning_rate": 4.704285977497687e-05,
|
428 |
+
"loss": 0.4365,
|
429 |
+
"step": 700
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.48,
|
433 |
+
"learning_rate": 4.6959534233215116e-05,
|
434 |
+
"loss": 0.4238,
|
435 |
+
"step": 710
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.48,
|
439 |
+
"learning_rate": 4.687512690651328e-05,
|
440 |
+
"loss": 0.4284,
|
441 |
+
"step": 720
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.49,
|
445 |
+
"learning_rate": 4.678964195300028e-05,
|
446 |
+
"loss": 0.4193,
|
447 |
+
"step": 730
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.5,
|
451 |
+
"learning_rate": 4.670308358389184e-05,
|
452 |
+
"loss": 0.4256,
|
453 |
+
"step": 740
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.5,
|
457 |
+
"learning_rate": 4.6615456063282944e-05,
|
458 |
+
"loss": 0.4288,
|
459 |
+
"step": 750
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.51,
|
463 |
+
"learning_rate": 4.652676370793784e-05,
|
464 |
+
"loss": 0.4335,
|
465 |
+
"step": 760
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.52,
|
469 |
+
"learning_rate": 4.643701088707736e-05,
|
470 |
+
"loss": 0.4271,
|
471 |
+
"step": 770
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.52,
|
475 |
+
"learning_rate": 4.634620202216366e-05,
|
476 |
+
"loss": 0.4304,
|
477 |
+
"step": 780
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.53,
|
481 |
+
"learning_rate": 4.625434158668246e-05,
|
482 |
+
"loss": 0.4249,
|
483 |
+
"step": 790
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.54,
|
487 |
+
"learning_rate": 4.6161434105922616e-05,
|
488 |
+
"loss": 0.4322,
|
489 |
+
"step": 800
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.54,
|
493 |
+
"learning_rate": 4.6067484156753234e-05,
|
494 |
+
"loss": 0.4229,
|
495 |
+
"step": 810
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.55,
|
499 |
+
"learning_rate": 4.597249636739815e-05,
|
500 |
+
"loss": 0.4252,
|
501 |
+
"step": 820
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.56,
|
505 |
+
"learning_rate": 4.5876475417207974e-05,
|
506 |
+
"loss": 0.413,
|
507 |
+
"step": 830
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.56,
|
511 |
+
"learning_rate": 4.577942603642959e-05,
|
512 |
+
"loss": 0.4186,
|
513 |
+
"step": 840
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.57,
|
517 |
+
"learning_rate": 4.568135300597306e-05,
|
518 |
+
"loss": 0.4233,
|
519 |
+
"step": 850
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.58,
|
523 |
+
"learning_rate": 4.5582261157176164e-05,
|
524 |
+
"loss": 0.4177,
|
525 |
+
"step": 860
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.58,
|
529 |
+
"learning_rate": 4.5482155371566384e-05,
|
530 |
+
"loss": 0.4236,
|
531 |
+
"step": 870
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.59,
|
535 |
+
"learning_rate": 4.538104058062042e-05,
|
536 |
+
"loss": 0.4228,
|
537 |
+
"step": 880
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.6,
|
541 |
+
"learning_rate": 4.5278921765521234e-05,
|
542 |
+
"loss": 0.4181,
|
543 |
+
"step": 890
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.6,
|
547 |
+
"learning_rate": 4.51758039569127e-05,
|
548 |
+
"loss": 0.4261,
|
549 |
+
"step": 900
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.61,
|
553 |
+
"learning_rate": 4.5071692234651764e-05,
|
554 |
+
"loss": 0.4217,
|
555 |
+
"step": 910
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.62,
|
559 |
+
"learning_rate": 4.4966591727558184e-05,
|
560 |
+
"loss": 0.4191,
|
561 |
+
"step": 920
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.62,
|
565 |
+
"learning_rate": 4.48605076131619e-05,
|
566 |
+
"loss": 0.4247,
|
567 |
+
"step": 930
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.63,
|
571 |
+
"learning_rate": 4.475344511744794e-05,
|
572 |
+
"loss": 0.4236,
|
573 |
+
"step": 940
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.64,
|
577 |
+
"learning_rate": 4.464540951459902e-05,
|
578 |
+
"loss": 0.4172,
|
579 |
+
"step": 950
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.64,
|
583 |
+
"learning_rate": 4.4536406126735664e-05,
|
584 |
+
"loss": 0.4209,
|
585 |
+
"step": 960
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.65,
|
589 |
+
"learning_rate": 4.442644032365407e-05,
|
590 |
+
"loss": 0.4179,
|
591 |
+
"step": 970
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.66,
|
595 |
+
"learning_rate": 4.431551752256155e-05,
|
596 |
+
"loss": 0.4166,
|
597 |
+
"step": 980
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.66,
|
601 |
+
"learning_rate": 4.420364318780973e-05,
|
602 |
+
"loss": 0.4173,
|
603 |
+
"step": 990
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.67,
|
607 |
+
"learning_rate": 4.4090822830625236e-05,
|
608 |
+
"loss": 0.4166,
|
609 |
+
"step": 1000
|
610 |
+
}
|
611 |
+
],
|
612 |
+
"logging_steps": 10,
|
613 |
+
"max_steps": 4476,
|
614 |
+
"num_train_epochs": 3,
|
615 |
+
"save_steps": 200,
|
616 |
+
"total_flos": 9.097203781942116e+18,
|
617 |
+
"trial_name": null,
|
618 |
+
"trial_params": null
|
619 |
+
}
|
checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:729bf37ae27da0051469b6c2d9a7528c72ecfe49e138964d0506deffbecbf5dd
|
3 |
+
size 4283
|
checkpoint-1200/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /home/hz/projects/chatglm3-6b-32k
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.1
|
checkpoint-1200/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/hz/projects/chatglm3-6b-32k",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"query_key_value"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
checkpoint-1200/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f20c941e90bb5428a8c782b9fdd552a0a14752555acb90450f67d506fb61213e
|
3 |
+
size 7820185
|
checkpoint-1200/added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|observation|>": 64797,
|
3 |
+
"<|user|>": 64795
|
4 |
+
}
|
checkpoint-1200/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:026f20db4aa943cf7fa1f4842646d76165d84726ac3b103486469d146cba2af2
|
3 |
+
size 15644485
|
checkpoint-1200/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df9c86207da192eb45fafab4e339545a4212fcdb73911f03f77b2c74e2826efe
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f6ca0cecc54a94203b5893c79a4e9964e83f47d7fc3230251eb9aaaf8fdb015
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb9205267352ed3614f0586889fed442a66c3c59f8e7824c1af3cadb71f1fa3a
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b8666e3e6876bb78a90d36299e773a4dba514962e67e8bf9d2a2acbbe9c5373
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d11de617b1d36bd8cf3a69ee99c9c9a4f30182d38f1f8a9b66e4482e42ec8e0a
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38a74118af5ea5a095571d00a792f8c938a69de0335db83aca2804fb6390924e
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72aa5252e4dd8473b5383b8c74bcf72acf8ea68bf6e54d1c263d57dec2fc1dd6
|
3 |
+
size 21687
|
checkpoint-1200/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fdb22b5e950a14c4a77bfad244d30f4589fd1944c2820e5f560936cc1640af0c
|
3 |
+
size 21687
|
checkpoint-1200/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3ae922322abc72af5a5a4e1e96d2b6312b8af582e691b3aadd460ab4b8f1cab
|
3 |
+
size 627
|
checkpoint-1200/special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|user|>",
|
4 |
+
"<|observation|>"
|
5 |
+
]
|
6 |
+
}
|
checkpoint-1200/tokenization_chatglm.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from typing import List, Optional, Union, Dict
|
5 |
+
from sentencepiece import SentencePieceProcessor
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging, PaddingStrategy
|
8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
+
|
10 |
+
|
11 |
+
class SPTokenizer:
|
12 |
+
def __init__(self, model_path: str):
|
13 |
+
# reload tokenizer
|
14 |
+
assert os.path.isfile(model_path), model_path
|
15 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
16 |
+
|
17 |
+
# BOS / EOS token IDs
|
18 |
+
self.n_words: int = self.sp_model.vocab_size()
|
19 |
+
self.bos_id: int = self.sp_model.bos_id()
|
20 |
+
self.eos_id: int = self.sp_model.eos_id()
|
21 |
+
self.pad_id: int = self.sp_model.unk_id()
|
22 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
23 |
+
|
24 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop", "<|system|>", "<|user|>", "<|assistant|>",
|
25 |
+
"<|observation|>"]
|
26 |
+
self.special_tokens = {}
|
27 |
+
self.index_special_tokens = {}
|
28 |
+
for token in special_tokens:
|
29 |
+
self.special_tokens[token] = self.n_words
|
30 |
+
self.index_special_tokens[self.n_words] = token
|
31 |
+
self.n_words += 1
|
32 |
+
|
33 |
+
def tokenize(self, s: str):
|
34 |
+
return self.sp_model.EncodeAsPieces(s)
|
35 |
+
|
36 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
37 |
+
assert type(s) is str
|
38 |
+
t = self.sp_model.encode(s)
|
39 |
+
if bos:
|
40 |
+
t = [self.bos_id] + t
|
41 |
+
if eos:
|
42 |
+
t = t + [self.eos_id]
|
43 |
+
return t
|
44 |
+
|
45 |
+
def decode(self, t: List[int]) -> str:
|
46 |
+
text, buffer = "", []
|
47 |
+
for token in t:
|
48 |
+
if token in self.index_special_tokens:
|
49 |
+
if buffer:
|
50 |
+
text += self.sp_model.decode(buffer)
|
51 |
+
buffer = []
|
52 |
+
text += self.index_special_tokens[token]
|
53 |
+
else:
|
54 |
+
buffer.append(token)
|
55 |
+
if buffer:
|
56 |
+
text += self.sp_model.decode(buffer)
|
57 |
+
return text
|
58 |
+
|
59 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
60 |
+
text = self.sp_model.DecodePieces(tokens)
|
61 |
+
return text
|
62 |
+
|
63 |
+
def convert_token_to_id(self, token):
|
64 |
+
""" Converts a token (str) in an id using the vocab. """
|
65 |
+
if token in self.special_tokens:
|
66 |
+
return self.special_tokens[token]
|
67 |
+
return self.sp_model.PieceToId(token)
|
68 |
+
|
69 |
+
def convert_id_to_token(self, index):
|
70 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
71 |
+
if index in self.index_special_tokens:
|
72 |
+
return self.index_special_tokens[index]
|
73 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
|
74 |
+
return ""
|
75 |
+
return self.sp_model.IdToPiece(index)
|
76 |
+
|
77 |
+
|
78 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
79 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
80 |
+
|
81 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
82 |
+
|
83 |
+
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
|
84 |
+
self.name = "GLMTokenizer"
|
85 |
+
|
86 |
+
self.vocab_file = vocab_file
|
87 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
88 |
+
self.special_tokens = {
|
89 |
+
"<bos>": self.tokenizer.bos_id,
|
90 |
+
"<eos>": self.tokenizer.eos_id,
|
91 |
+
"<pad>": self.tokenizer.pad_id
|
92 |
+
}
|
93 |
+
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
|
94 |
+
|
95 |
+
def get_command(self, token):
|
96 |
+
if token in self.special_tokens:
|
97 |
+
return self.special_tokens[token]
|
98 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
99 |
+
return self.tokenizer.special_tokens[token]
|
100 |
+
|
101 |
+
@property
|
102 |
+
def unk_token(self) -> str:
|
103 |
+
return "<unk>"
|
104 |
+
|
105 |
+
@property
|
106 |
+
def pad_token(self) -> str:
|
107 |
+
return "<unk>"
|
108 |
+
|
109 |
+
@property
|
110 |
+
def pad_token_id(self):
|
111 |
+
return self.get_command("<pad>")
|
112 |
+
|
113 |
+
@property
|
114 |
+
def eos_token(self) -> str:
|
115 |
+
return "</s>"
|
116 |
+
|
117 |
+
@property
|
118 |
+
def eos_token_id(self):
|
119 |
+
return self.get_command("<eos>")
|
120 |
+
|
121 |
+
@property
|
122 |
+
def vocab_size(self):
|
123 |
+
return self.tokenizer.n_words
|
124 |
+
|
125 |
+
def get_vocab(self):
|
126 |
+
""" Returns vocab as a dict """
|
127 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
128 |
+
vocab.update(self.added_tokens_encoder)
|
129 |
+
return vocab
|
130 |
+
|
131 |
+
def _tokenize(self, text, **kwargs):
|
132 |
+
return self.tokenizer.tokenize(text)
|
133 |
+
|
134 |
+
def _convert_token_to_id(self, token):
|
135 |
+
""" Converts a token (str) in an id using the vocab. """
|
136 |
+
return self.tokenizer.convert_token_to_id(token)
|
137 |
+
|
138 |
+
def _convert_id_to_token(self, index):
|
139 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
140 |
+
return self.tokenizer.convert_id_to_token(index)
|
141 |
+
|
142 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
143 |
+
return self.tokenizer.decode_tokens(tokens)
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
filename_prefix (`str`, *optional*):
|
153 |
+
An optional prefix to add to the named of the saved files.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
`Tuple(str)`: Paths to the files saved.
|
157 |
+
"""
|
158 |
+
if os.path.isdir(save_directory):
|
159 |
+
vocab_file = os.path.join(
|
160 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
vocab_file = save_directory
|
164 |
+
|
165 |
+
with open(self.vocab_file, 'rb') as fin:
|
166 |
+
proto_str = fin.read()
|
167 |
+
|
168 |
+
with open(vocab_file, "wb") as writer:
|
169 |
+
writer.write(proto_str)
|
170 |
+
|
171 |
+
return (vocab_file,)
|
172 |
+
|
173 |
+
def get_prefix_tokens(self):
|
174 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
175 |
+
return prefix_tokens
|
176 |
+
|
177 |
+
def build_single_message(self, role, metadata, message):
|
178 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
179 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
180 |
+
message_tokens = self.tokenizer.encode(message)
|
181 |
+
tokens = role_tokens + message_tokens
|
182 |
+
return tokens
|
183 |
+
|
184 |
+
def build_chat_input(self, query, history=None, role="user"):
|
185 |
+
if history is None:
|
186 |
+
history = []
|
187 |
+
input_ids = []
|
188 |
+
for item in history:
|
189 |
+
content = item["content"]
|
190 |
+
if item["role"] == "system" and "tools" in item:
|
191 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
192 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
193 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
194 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
195 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
196 |
+
|
197 |
+
def build_inputs_with_special_tokens(
|
198 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
199 |
+
) -> List[int]:
|
200 |
+
"""
|
201 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
202 |
+
adding special tokens. A BERT sequence has the following format:
|
203 |
+
|
204 |
+
- single sequence: `[CLS] X [SEP]`
|
205 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
206 |
+
|
207 |
+
Args:
|
208 |
+
token_ids_0 (`List[int]`):
|
209 |
+
List of IDs to which the special tokens will be added.
|
210 |
+
token_ids_1 (`List[int]`, *optional*):
|
211 |
+
Optional second list of IDs for sequence pairs.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
215 |
+
"""
|
216 |
+
prefix_tokens = self.get_prefix_tokens()
|
217 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
218 |
+
if token_ids_1 is not None:
|
219 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
220 |
+
return token_ids_0
|
221 |
+
|
222 |
+
def _pad(
|
223 |
+
self,
|
224 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
225 |
+
max_length: Optional[int] = None,
|
226 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
227 |
+
pad_to_multiple_of: Optional[int] = None,
|
228 |
+
return_attention_mask: Optional[bool] = None,
|
229 |
+
) -> dict:
|
230 |
+
"""
|
231 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
232 |
+
|
233 |
+
Args:
|
234 |
+
encoded_inputs:
|
235 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
236 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
237 |
+
Will truncate by taking into account the special tokens.
|
238 |
+
padding_strategy: PaddingStrategy to use for padding.
|
239 |
+
|
240 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
241 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
242 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
243 |
+
The tokenizer padding sides are defined in self.padding_side:
|
244 |
+
|
245 |
+
- 'left': pads on the left of the sequences
|
246 |
+
- 'right': pads on the right of the sequences
|
247 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
248 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
249 |
+
`>= 7.5` (Volta).
|
250 |
+
return_attention_mask:
|
251 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
252 |
+
"""
|
253 |
+
# Load from model defaults
|
254 |
+
assert self.padding_side == "left"
|
255 |
+
|
256 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
257 |
+
seq_length = len(required_input)
|
258 |
+
|
259 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
260 |
+
max_length = len(required_input)
|
261 |
+
|
262 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
263 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
264 |
+
|
265 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
266 |
+
|
267 |
+
# Initialize attention mask if not present.
|
268 |
+
if "attention_mask" not in encoded_inputs:
|
269 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
270 |
+
|
271 |
+
if "position_ids" not in encoded_inputs:
|
272 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
273 |
+
|
274 |
+
if needs_to_be_padded:
|
275 |
+
difference = max_length - len(required_input)
|
276 |
+
|
277 |
+
if "attention_mask" in encoded_inputs:
|
278 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
279 |
+
if "position_ids" in encoded_inputs:
|
280 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
281 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
282 |
+
|
283 |
+
return encoded_inputs
|
checkpoint-1200/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
checkpoint-1200/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"64795": {
|
4 |
+
"content": "<|user|>",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"64797": {
|
12 |
+
"content": "<|observation|>",
|
13 |
+
"lstrip": true,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": true,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
}
|
19 |
+
},
|
20 |
+
"additional_special_tokens": [
|
21 |
+
"<|user|>",
|
22 |
+
"<|observation|>"
|
23 |
+
],
|
24 |
+
"auto_map": {
|
25 |
+
"AutoTokenizer": [
|
26 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
27 |
+
null
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"clean_up_tokenization_spaces": false,
|
31 |
+
"do_lower_case": false,
|
32 |
+
"model_max_length": 1000000000000000019884624838656,
|
33 |
+
"padding_side": "right",
|
34 |
+
"remove_space": false,
|
35 |
+
"split_special_tokens": false,
|
36 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
37 |
+
"tokenizer_file": null
|
38 |
+
}
|
checkpoint-1200/trainer_state.json
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.8041547997989613,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1200,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.99993842168232e-05,
|
14 |
+
"loss": 1.2211,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 4.9997536897627915e-05,
|
20 |
+
"loss": 1.0276,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.02,
|
25 |
+
"learning_rate": 4.9994458133418e-05,
|
26 |
+
"loss": 0.8587,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 4.999014807586154e-05,
|
32 |
+
"loss": 0.7431,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.03,
|
37 |
+
"learning_rate": 4.9984606937283405e-05,
|
38 |
+
"loss": 0.6841,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.04,
|
43 |
+
"learning_rate": 4.9977834990654804e-05,
|
44 |
+
"loss": 0.6452,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.05,
|
49 |
+
"learning_rate": 4.99698325695798e-05,
|
50 |
+
"loss": 0.6347,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.05,
|
55 |
+
"learning_rate": 4.9960600068278876e-05,
|
56 |
+
"loss": 0.6109,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.06,
|
61 |
+
"learning_rate": 4.995013794156957e-05,
|
62 |
+
"loss": 0.5911,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.07,
|
67 |
+
"learning_rate": 4.993844670484401e-05,
|
68 |
+
"loss": 0.5803,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.07,
|
73 |
+
"learning_rate": 4.992552693404354e-05,
|
74 |
+
"loss": 0.5902,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.08,
|
79 |
+
"learning_rate": 4.991137926563036e-05,
|
80 |
+
"loss": 0.5745,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.09,
|
85 |
+
"learning_rate": 4.9896004396556176e-05,
|
86 |
+
"loss": 0.5538,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.09,
|
91 |
+
"learning_rate": 4.987940308422783e-05,
|
92 |
+
"loss": 0.5495,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.1,
|
97 |
+
"learning_rate": 4.986157614647005e-05,
|
98 |
+
"loss": 0.5433,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.11,
|
103 |
+
"learning_rate": 4.984252446148508e-05,
|
104 |
+
"loss": 0.548,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.11,
|
109 |
+
"learning_rate": 4.98222489678095e-05,
|
110 |
+
"loss": 0.5361,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.12,
|
115 |
+
"learning_rate": 4.980075066426796e-05,
|
116 |
+
"loss": 0.5331,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.13,
|
121 |
+
"learning_rate": 4.977803060992393e-05,
|
122 |
+
"loss": 0.53,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.13,
|
127 |
+
"learning_rate": 4.97540899240276e-05,
|
128 |
+
"loss": 0.5135,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.14,
|
133 |
+
"learning_rate": 4.972892978596069e-05,
|
134 |
+
"loss": 0.5101,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.15,
|
139 |
+
"learning_rate": 4.970255143517838e-05,
|
140 |
+
"loss": 0.5125,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.15,
|
145 |
+
"learning_rate": 4.967495617114826e-05,
|
146 |
+
"loss": 0.4928,
|
147 |
+
"step": 230
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.16,
|
151 |
+
"learning_rate": 4.964614535328626e-05,
|
152 |
+
"loss": 0.4878,
|
153 |
+
"step": 240
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.17,
|
157 |
+
"learning_rate": 4.961612040088973e-05,
|
158 |
+
"loss": 0.5017,
|
159 |
+
"step": 250
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.17,
|
163 |
+
"learning_rate": 4.9584882793067534e-05,
|
164 |
+
"loss": 0.4863,
|
165 |
+
"step": 260
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.18,
|
169 |
+
"learning_rate": 4.955243406866713e-05,
|
170 |
+
"loss": 0.4847,
|
171 |
+
"step": 270
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.19,
|
175 |
+
"learning_rate": 4.951877582619881e-05,
|
176 |
+
"loss": 0.4868,
|
177 |
+
"step": 280
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.19,
|
181 |
+
"learning_rate": 4.948390972375694e-05,
|
182 |
+
"loss": 0.4748,
|
183 |
+
"step": 290
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.2,
|
187 |
+
"learning_rate": 4.944783747893825e-05,
|
188 |
+
"loss": 0.4764,
|
189 |
+
"step": 300
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.21,
|
193 |
+
"learning_rate": 4.941056086875727e-05,
|
194 |
+
"loss": 0.4712,
|
195 |
+
"step": 310
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.21,
|
199 |
+
"learning_rate": 4.937208172955876e-05,
|
200 |
+
"loss": 0.4642,
|
201 |
+
"step": 320
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.22,
|
205 |
+
"learning_rate": 4.9332401956927224e-05,
|
206 |
+
"loss": 0.4642,
|
207 |
+
"step": 330
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.23,
|
211 |
+
"learning_rate": 4.9291523505593604e-05,
|
212 |
+
"loss": 0.4709,
|
213 |
+
"step": 340
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.23,
|
217 |
+
"learning_rate": 4.9249448389338905e-05,
|
218 |
+
"loss": 0.461,
|
219 |
+
"step": 350
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.24,
|
223 |
+
"learning_rate": 4.920617868089501e-05,
|
224 |
+
"loss": 0.4677,
|
225 |
+
"step": 360
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.25,
|
229 |
+
"learning_rate": 4.9161716511842614e-05,
|
230 |
+
"loss": 0.4564,
|
231 |
+
"step": 370
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.25,
|
235 |
+
"learning_rate": 4.911606407250617e-05,
|
236 |
+
"loss": 0.4663,
|
237 |
+
"step": 380
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.26,
|
241 |
+
"learning_rate": 4.9069223611846014e-05,
|
242 |
+
"loss": 0.4682,
|
243 |
+
"step": 390
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.27,
|
247 |
+
"learning_rate": 4.9021197437347555e-05,
|
248 |
+
"loss": 0.4636,
|
249 |
+
"step": 400
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.27,
|
253 |
+
"learning_rate": 4.897198791490762e-05,
|
254 |
+
"loss": 0.4569,
|
255 |
+
"step": 410
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.28,
|
259 |
+
"learning_rate": 4.8921597468717887e-05,
|
260 |
+
"loss": 0.462,
|
261 |
+
"step": 420
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.29,
|
265 |
+
"learning_rate": 4.887002858114548e-05,
|
266 |
+
"loss": 0.4563,
|
267 |
+
"step": 430
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.29,
|
271 |
+
"learning_rate": 4.881728379261068e-05,
|
272 |
+
"loss": 0.4563,
|
273 |
+
"step": 440
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.3,
|
277 |
+
"learning_rate": 4.876336570146175e-05,
|
278 |
+
"loss": 0.4468,
|
279 |
+
"step": 450
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.31,
|
283 |
+
"learning_rate": 4.870827696384698e-05,
|
284 |
+
"loss": 0.4508,
|
285 |
+
"step": 460
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.31,
|
289 |
+
"learning_rate": 4.865202029358379e-05,
|
290 |
+
"loss": 0.4507,
|
291 |
+
"step": 470
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.32,
|
295 |
+
"learning_rate": 4.859459846202507e-05,
|
296 |
+
"loss": 0.4486,
|
297 |
+
"step": 480
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.33,
|
301 |
+
"learning_rate": 4.853601429792265e-05,
|
302 |
+
"loss": 0.4423,
|
303 |
+
"step": 490
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.34,
|
307 |
+
"learning_rate": 4.847627068728795e-05,
|
308 |
+
"loss": 0.4369,
|
309 |
+
"step": 500
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.34,
|
313 |
+
"learning_rate": 4.841537057324979e-05,
|
314 |
+
"loss": 0.4429,
|
315 |
+
"step": 510
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.35,
|
319 |
+
"learning_rate": 4.835331695590943e-05,
|
320 |
+
"loss": 0.4389,
|
321 |
+
"step": 520
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.36,
|
325 |
+
"learning_rate": 4.829011289219276e-05,
|
326 |
+
"loss": 0.44,
|
327 |
+
"step": 530
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.36,
|
331 |
+
"learning_rate": 4.82257614956997e-05,
|
332 |
+
"loss": 0.4476,
|
333 |
+
"step": 540
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.37,
|
337 |
+
"learning_rate": 4.816026593655085e-05,
|
338 |
+
"loss": 0.4367,
|
339 |
+
"step": 550
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.38,
|
343 |
+
"learning_rate": 4.809362944123129e-05,
|
344 |
+
"loss": 0.4357,
|
345 |
+
"step": 560
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.38,
|
349 |
+
"learning_rate": 4.802585529243164e-05,
|
350 |
+
"loss": 0.4492,
|
351 |
+
"step": 570
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.39,
|
355 |
+
"learning_rate": 4.795694682888635e-05,
|
356 |
+
"loss": 0.4403,
|
357 |
+
"step": 580
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.4,
|
361 |
+
"learning_rate": 4.7886907445209234e-05,
|
362 |
+
"loss": 0.4406,
|
363 |
+
"step": 590
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.4,
|
367 |
+
"learning_rate": 4.781574059172621e-05,
|
368 |
+
"loss": 0.4317,
|
369 |
+
"step": 600
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.41,
|
373 |
+
"learning_rate": 4.7743449774305386e-05,
|
374 |
+
"loss": 0.4379,
|
375 |
+
"step": 610
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.42,
|
379 |
+
"learning_rate": 4.7670038554184296e-05,
|
380 |
+
"loss": 0.4324,
|
381 |
+
"step": 620
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.42,
|
385 |
+
"learning_rate": 4.7595510547794465e-05,
|
386 |
+
"loss": 0.4329,
|
387 |
+
"step": 630
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.43,
|
391 |
+
"learning_rate": 4.751986942658332e-05,
|
392 |
+
"loss": 0.4259,
|
393 |
+
"step": 640
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.44,
|
397 |
+
"learning_rate": 4.744311891683325e-05,
|
398 |
+
"loss": 0.4256,
|
399 |
+
"step": 650
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.44,
|
403 |
+
"learning_rate": 4.736526279947807e-05,
|
404 |
+
"loss": 0.4289,
|
405 |
+
"step": 660
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.45,
|
409 |
+
"learning_rate": 4.728630490991676e-05,
|
410 |
+
"loss": 0.4353,
|
411 |
+
"step": 670
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.46,
|
415 |
+
"learning_rate": 4.7206249137824535e-05,
|
416 |
+
"loss": 0.4413,
|
417 |
+
"step": 680
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.46,
|
421 |
+
"learning_rate": 4.7125099426961185e-05,
|
422 |
+
"loss": 0.4302,
|
423 |
+
"step": 690
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.47,
|
427 |
+
"learning_rate": 4.704285977497687e-05,
|
428 |
+
"loss": 0.4365,
|
429 |
+
"step": 700
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.48,
|
433 |
+
"learning_rate": 4.6959534233215116e-05,
|
434 |
+
"loss": 0.4238,
|
435 |
+
"step": 710
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.48,
|
439 |
+
"learning_rate": 4.687512690651328e-05,
|
440 |
+
"loss": 0.4284,
|
441 |
+
"step": 720
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.49,
|
445 |
+
"learning_rate": 4.678964195300028e-05,
|
446 |
+
"loss": 0.4193,
|
447 |
+
"step": 730
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.5,
|
451 |
+
"learning_rate": 4.670308358389184e-05,
|
452 |
+
"loss": 0.4256,
|
453 |
+
"step": 740
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.5,
|
457 |
+
"learning_rate": 4.6615456063282944e-05,
|
458 |
+
"loss": 0.4288,
|
459 |
+
"step": 750
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.51,
|
463 |
+
"learning_rate": 4.652676370793784e-05,
|
464 |
+
"loss": 0.4335,
|
465 |
+
"step": 760
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.52,
|
469 |
+
"learning_rate": 4.643701088707736e-05,
|
470 |
+
"loss": 0.4271,
|
471 |
+
"step": 770
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.52,
|
475 |
+
"learning_rate": 4.634620202216366e-05,
|
476 |
+
"loss": 0.4304,
|
477 |
+
"step": 780
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.53,
|
481 |
+
"learning_rate": 4.625434158668246e-05,
|
482 |
+
"loss": 0.4249,
|
483 |
+
"step": 790
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.54,
|
487 |
+
"learning_rate": 4.6161434105922616e-05,
|
488 |
+
"loss": 0.4322,
|
489 |
+
"step": 800
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.54,
|
493 |
+
"learning_rate": 4.6067484156753234e-05,
|
494 |
+
"loss": 0.4229,
|
495 |
+
"step": 810
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.55,
|
499 |
+
"learning_rate": 4.597249636739815e-05,
|
500 |
+
"loss": 0.4252,
|
501 |
+
"step": 820
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.56,
|
505 |
+
"learning_rate": 4.5876475417207974e-05,
|
506 |
+
"loss": 0.413,
|
507 |
+
"step": 830
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.56,
|
511 |
+
"learning_rate": 4.577942603642959e-05,
|
512 |
+
"loss": 0.4186,
|
513 |
+
"step": 840
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.57,
|
517 |
+
"learning_rate": 4.568135300597306e-05,
|
518 |
+
"loss": 0.4233,
|
519 |
+
"step": 850
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.58,
|
523 |
+
"learning_rate": 4.5582261157176164e-05,
|
524 |
+
"loss": 0.4177,
|
525 |
+
"step": 860
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 0.58,
|
529 |
+
"learning_rate": 4.5482155371566384e-05,
|
530 |
+
"loss": 0.4236,
|
531 |
+
"step": 870
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.59,
|
535 |
+
"learning_rate": 4.538104058062042e-05,
|
536 |
+
"loss": 0.4228,
|
537 |
+
"step": 880
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.6,
|
541 |
+
"learning_rate": 4.5278921765521234e-05,
|
542 |
+
"loss": 0.4181,
|
543 |
+
"step": 890
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.6,
|
547 |
+
"learning_rate": 4.51758039569127e-05,
|
548 |
+
"loss": 0.4261,
|
549 |
+
"step": 900
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.61,
|
553 |
+
"learning_rate": 4.5071692234651764e-05,
|
554 |
+
"loss": 0.4217,
|
555 |
+
"step": 910
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.62,
|
559 |
+
"learning_rate": 4.4966591727558184e-05,
|
560 |
+
"loss": 0.4191,
|
561 |
+
"step": 920
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 0.62,
|
565 |
+
"learning_rate": 4.48605076131619e-05,
|
566 |
+
"loss": 0.4247,
|
567 |
+
"step": 930
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.63,
|
571 |
+
"learning_rate": 4.475344511744794e-05,
|
572 |
+
"loss": 0.4236,
|
573 |
+
"step": 940
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.64,
|
577 |
+
"learning_rate": 4.464540951459902e-05,
|
578 |
+
"loss": 0.4172,
|
579 |
+
"step": 950
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.64,
|
583 |
+
"learning_rate": 4.4536406126735664e-05,
|
584 |
+
"loss": 0.4209,
|
585 |
+
"step": 960
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.65,
|
589 |
+
"learning_rate": 4.442644032365407e-05,
|
590 |
+
"loss": 0.4179,
|
591 |
+
"step": 970
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.66,
|
595 |
+
"learning_rate": 4.431551752256155e-05,
|
596 |
+
"loss": 0.4166,
|
597 |
+
"step": 980
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.66,
|
601 |
+
"learning_rate": 4.420364318780973e-05,
|
602 |
+
"loss": 0.4173,
|
603 |
+
"step": 990
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.67,
|
607 |
+
"learning_rate": 4.4090822830625236e-05,
|
608 |
+
"loss": 0.4166,
|
609 |
+
"step": 1000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.68,
|
613 |
+
"learning_rate": 4.3977062008838307e-05,
|
614 |
+
"loss": 0.4173,
|
615 |
+
"step": 1010
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.68,
|
619 |
+
"learning_rate": 4.3862366326608975e-05,
|
620 |
+
"loss": 0.4049,
|
621 |
+
"step": 1020
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.69,
|
625 |
+
"learning_rate": 4.374674143415096e-05,
|
626 |
+
"loss": 0.4143,
|
627 |
+
"step": 1030
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.7,
|
631 |
+
"learning_rate": 4.363019302745334e-05,
|
632 |
+
"loss": 0.4219,
|
633 |
+
"step": 1040
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.7,
|
637 |
+
"learning_rate": 4.3512726847999987e-05,
|
638 |
+
"loss": 0.4152,
|
639 |
+
"step": 1050
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.71,
|
643 |
+
"learning_rate": 4.339434868248665e-05,
|
644 |
+
"loss": 0.4153,
|
645 |
+
"step": 1060
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.72,
|
649 |
+
"learning_rate": 4.3275064362535966e-05,
|
650 |
+
"loss": 0.4148,
|
651 |
+
"step": 1070
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.72,
|
655 |
+
"learning_rate": 4.315487976441014e-05,
|
656 |
+
"loss": 0.4147,
|
657 |
+
"step": 1080
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.73,
|
661 |
+
"learning_rate": 4.303380080872145e-05,
|
662 |
+
"loss": 0.41,
|
663 |
+
"step": 1090
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.74,
|
667 |
+
"learning_rate": 4.291183346014063e-05,
|
668 |
+
"loss": 0.4119,
|
669 |
+
"step": 1100
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.74,
|
673 |
+
"learning_rate": 4.278898372710296e-05,
|
674 |
+
"loss": 0.4173,
|
675 |
+
"step": 1110
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.75,
|
679 |
+
"learning_rate": 4.266525766151238e-05,
|
680 |
+
"loss": 0.4119,
|
681 |
+
"step": 1120
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.76,
|
685 |
+
"learning_rate": 4.254066135844326e-05,
|
686 |
+
"loss": 0.4163,
|
687 |
+
"step": 1130
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 0.76,
|
691 |
+
"learning_rate": 4.2415200955840184e-05,
|
692 |
+
"loss": 0.4104,
|
693 |
+
"step": 1140
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.77,
|
697 |
+
"learning_rate": 4.228888263421557e-05,
|
698 |
+
"loss": 0.4045,
|
699 |
+
"step": 1150
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.78,
|
703 |
+
"learning_rate": 4.216171261634521e-05,
|
704 |
+
"loss": 0.413,
|
705 |
+
"step": 1160
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 0.78,
|
709 |
+
"learning_rate": 4.2033697166961716e-05,
|
710 |
+
"loss": 0.4112,
|
711 |
+
"step": 1170
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.79,
|
715 |
+
"learning_rate": 4.1904842592445906e-05,
|
716 |
+
"loss": 0.4018,
|
717 |
+
"step": 1180
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.8,
|
721 |
+
"learning_rate": 4.177515524051609e-05,
|
722 |
+
"loss": 0.4068,
|
723 |
+
"step": 1190
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.8,
|
727 |
+
"learning_rate": 4.1644641499915454e-05,
|
728 |
+
"loss": 0.4029,
|
729 |
+
"step": 1200
|
730 |
+
}
|
731 |
+
],
|
732 |
+
"logging_steps": 10,
|
733 |
+
"max_steps": 4476,
|
734 |
+
"num_train_epochs": 3,
|
735 |
+
"save_steps": 200,
|
736 |
+
"total_flos": 1.0916468228205052e+19,
|
737 |
+
"trial_name": null,
|
738 |
+
"trial_params": null
|
739 |
+
}
|
checkpoint-1200/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:729bf37ae27da0051469b6c2d9a7528c72ecfe49e138964d0506deffbecbf5dd
|
3 |
+
size 4283
|
checkpoint-1400/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: /home/hz/projects/chatglm3-6b-32k
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.1
|
checkpoint-1400/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/hz/projects/chatglm3-6b-32k",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"query_key_value"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
checkpoint-1400/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2adba2088f9c10df3366820a3640d294362738b7833f646fb0aada9e022509b4
|
3 |
+
size 7820185
|
checkpoint-1400/added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|observation|>": 64797,
|
3 |
+
"<|user|>": 64795
|
4 |
+
}
|