{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6a6297f600>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670331226301175288, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWMfxQyVwcUCUhpRSlIwBbJRL6YwBdJRHQKAxzPGACnx1fZQoaAZoCWgPQwhkHvmDwcRxQJSGlFKUaBVL6WgWR0CgMfnPeHi4dX2UKGgGaAloD0MIPPVIg5v4cECUhpRSlGgVS91oFkdAoDI0yrPt2XV9lChoBmgJaA9DCJkrg2rDw3JAlIaUUpRoFU0PAWgWR0CgMnvsZ5zHdX2UKGgGaAloD0MIYajDCreQbUCUhpRSlGgVS+1oFkdAoDKAE8q4IHV9lChoBmgJaA9DCNTS3AphQHJAlIaUUpRoFUvPaBZHQKAyk43m3fB1fZQoaAZoCWgPQwjl0CLb+SRxQJSGlFKUaBVNCgFoFkdAoDKY8Md92HV9lChoBmgJaA9DCO7rwDmj0nJAlIaUUpRoFUvraBZHQKAynjdYW+J1fZQoaAZoCWgPQwjAety3mvxyQJSGlFKUaBVNGgFoFkdAoDLX5FgDzXV9lChoBmgJaA9DCLR1cLB3FnNAlIaUUpRoFUvzaBZHQKAy3wS8J2N1fZQoaAZoCWgPQwgC85Apn3BxQJSGlFKUaBVNGAFoFkdAoDQq/IsAenV9lChoBmgJaA9DCDUMHxHTzXFAlIaUUpRoFU0BAWgWR0CgNFCT2WY4dX2UKGgGaAloD0MIZED2encWcUCUhpRSlGgVS+xoFkdAoDTA79ycTnV9lChoBmgJaA9DCFfsL7snwG5AlIaUUpRoFUvnaBZHQKA08fZElVt1fZQoaAZoCWgPQwg66BIO/atxQJSGlFKUaBVL4mgWR0CgNWYNZvDQdX2UKGgGaAloD0MIylTBqKQTcECUhpRSlGgVTTgBaBZHQKA1pT2FnI11fZQoaAZoCWgPQwjL2qZ43EtwQJSGlFKUaBVL+mgWR0CgNgx/d69kdX2UKGgGaAloD0MIs5YC0n61ckCUhpRSlGgVS9toFkdAoDZS5I6KcnV9lChoBmgJaA9DCBjONczQFXFAlIaUUpRoFU0nAWgWR0CgNmAZKnNxdX2UKGgGaAloD0MIpHA9CtcncUCUhpRSlGgVS/VoFkdAoDZfLRrrPnV9lChoBmgJaA9DCGgFhqzu33FAlIaUUpRoFU0IAWgWR0CgNpEeQuEmdX2UKGgGaAloD0MIIH7+ezBpcUCUhpRSlGgVTQgBaBZHQKA2rQm/nGN1fZQoaAZoCWgPQwi8QbRWNBxvQJSGlFKUaBVL9mgWR0CgNrHVXmvGdX2UKGgGaAloD0MIrkoi+yCHckCUhpRSlGgVTRUBaBZHQKA20SOinHh1fZQoaAZoCWgPQwhfQ3BcxmBzQJSGlFKUaBVNJAFoFkdAoDb92V3Ux3V9lChoBmgJaA9DCBIvT+fKwHFAlIaUUpRoFU0BAWgWR0CgOEoDoyKvdX2UKGgGaAloD0MIE0NyMjF/c0CUhpRSlGgVS/5oFkdAoDhcx46fa3V9lChoBmgJaA9DCIOI1LSLrG9AlIaUUpRoFUvzaBZHQKA4xIUahpR1fZQoaAZoCWgPQwj68CxBBt1wQJSGlFKUaBVL5WgWR0CgOT6SLZSOdX2UKGgGaAloD0MIYobGE4GscUCUhpRSlGgVTQ4BaBZHQKA50tjCpFV1fZQoaAZoCWgPQwjpZKn1fp5vQJSGlFKUaBVL8WgWR0CgOf4150KadX2UKGgGaAloD0MI4QhSKTYyc0CUhpRSlGgVS+RoFkdAoDoQg5imVXV9lChoBmgJaA9DCNHoDmJnonBAlIaUUpRoFUvnaBZHQKA6Ko+fRNR1fZQoaAZoCWgPQwh9eJYgo2JwQJSGlFKUaBVL92gWR0CgOnW0Z3s5dX2UKGgGaAloD0MI3q0s0RnocUCUhpRSlGgVS+RoFkdAoDp7EzfrKXV9lChoBmgJaA9DCNnMIamFnm9AlIaUUpRoFUvsaBZHQKA6eup0fYB1fZQoaAZoCWgPQwgpr5XQXV5JQJSGlFKUaBVN6ANoFkdAoDqTW3BpH3V9lChoBmgJaA9DCI+pu7JL8HFAlIaUUpRoFUvsaBZHQKA6mbADaGp1fZQoaAZoCWgPQwi0xwvpsDNwQJSGlFKUaBVL5mgWR0CgOqclPacqdX2UKGgGaAloD0MItU5cjldBc0CUhpRSlGgVS/BoFkdAoDrnEbYK6XV9lChoBmgJaA9DCFpJK74h1G5AlIaUUpRoFUvjaBZHQKBWlcX3xnZ1fZQoaAZoCWgPQwiLNzKPvLhxQJSGlFKUaBVL5mgWR0CgVrxOclPadX2UKGgGaAloD0MIXRq/8EqmbUCUhpRSlGgVS+ZoFkdAoFeUQVbiZXV9lChoBmgJaA9DCPK1Z5YEZXNAlIaUUpRoFU0LAWgWR0CgV7xbr1M/dX2UKGgGaAloD0MILliqCzjRcECUhpRSlGgVS+ZoFkdAoFhfxri2lXV9lChoBmgJaA9DCHCZ02VxrHFAlIaUUpRoFUv7aBZHQKBYanbZezF1fZQoaAZoCWgPQwiFfTuJCJpyQJSGlFKUaBVL82gWR0CgWG6AOJ+EdX2UKGgGaAloD0MIxD9s6ZEzckCUhpRSlGgVS/JoFkdAoFh5f0Eov3V9lChoBmgJaA9DCNobfGEyvG9AlIaUUpRoFUvoaBZHQKBYrS/j81p1fZQoaAZoCWgPQwjXv+szZ5BuQJSGlFKUaBVL82gWR0CgWNYBmwqzdX2UKGgGaAloD0MII57sZgY1c0CUhpRSlGgVS+9oFkdAoFjlCmdiD3V9lChoBmgJaA9DCBpNLsZAX3NAlIaUUpRoFUvxaBZHQKBY+wXZXdV1fZQoaAZoCWgPQwjJPPIHw+JyQJSGlFKUaBVL/mgWR0CgWP8+aBqcdX2UKGgGaAloD0MI8+fbgqXObUCUhpRSlGgVS+doFkdAoFkjaPCEYnV9lChoBmgJaA9DCLGk3H3OpXFAlIaUUpRoFU0AAWgWR0CgWSbdi2DydX2UKGgGaAloD0MIey3ovbGAb0CUhpRSlGgVS9xoFkdAoFoJ59mYjXV9lChoBmgJaA9DCKSLTSuFuG9AlIaUUpRoFUvraBZHQKBaKEvkBCF1fZQoaAZoCWgPQwhOmgZFM2xwQJSGlFKUaBVL42gWR0CgWupVsDW9dX2UKGgGaAloD0MIPKOtSiLXcUCUhpRSlGgVS95oFkdAoFurAaef7XV9lChoBmgJaA9DCKBU+3S8R3FAlIaUUpRoFUvqaBZHQKBb2J0GNaR1fZQoaAZoCWgPQwgMPWL03LlvQJSGlFKUaBVL+WgWR0CgXCXbM5fddX2UKGgGaAloD0MIaVIKuj0RbkCUhpRSlGgVS+toFkdAoFwuFJxvN3V9lChoBmgJaA9DCCzy64eYj3JAlIaUUpRoFUv9aBZHQKBcSJdjXnR1fZQoaAZoCWgPQwidn+I4cNVyQJSGlFKUaBVL+mgWR0CgXJznRsuWdX2UKGgGaAloD0MIfewuUBJGckCUhpRSlGgVS/hoFkdAoFzGnAIppnV9lChoBmgJaA9DCIZyol2FVnFAlIaUUpRoFUv6aBZHQKBcyfI0ZWJ1fZQoaAZoCWgPQwj/dW7azCNyQJSGlFKUaBVNDAFoFkdAoFz1SqEOAnV9lChoBmgJaA9DCKw5QDBHO3JAlIaUUpRoFU1cAWgWR0CgXRfCyhSMdX2UKGgGaAloD0MIZCR7hNqJcECUhpRSlGgVTQYBaBZHQKBdIvPC2tx1fZQoaAZoCWgPQwh+VpkpLb9vQJSGlFKUaBVL3GgWR0CgXZ9xIatLdX2UKGgGaAloD0MI8+ZwrTbccUCUhpRSlGgVS+RoFkdAoF2igVXV9XV9lChoBmgJaA9DCJcA/FOqnXFAlIaUUpRoFUvgaBZHQKBebpV0cOt1fZQoaAZoCWgPQwitwfuqnK1xQJSGlFKUaBVL2mgWR0CgXxGIbfgrdX2UKGgGaAloD0MIBoGVQ4sAZECUhpRSlGgVTegDaBZHQKBfFjc2zfJ1fZQoaAZoCWgPQwgKZ7eWiR5wQJSGlFKUaBVL3WgWR0CgX47a7EpBdX2UKGgGaAloD0MI7e9sj94bcUCUhpRSlGgVS/xoFkdAoF+2p84Pw3V9lChoBmgJaA9DCDiCVIrdNnNAlIaUUpRoFUvZaBZHQKBf3SWJJoV1fZQoaAZoCWgPQwjeOCnM+wpxQJSGlFKUaBVL0mgWR0CgX+jaGpMpdX2UKGgGaAloD0MIbMuAsxRlckCUhpRSlGgVS/poFkdAoF/w4ZMtb3V9lChoBmgJaA9DCP+R6dApNnFAlIaUUpRoFU0FAWgWR0CgYDHE/B3zdX2UKGgGaAloD0MID9Qpj+6FcECUhpRSlGgVS+hoFkdAoGBitxMnJHV9lChoBmgJaA9DCNjTDn8Ng3FAlIaUUpRoFUveaBZHQKBgcR02cax1fZQoaAZoCWgPQwh5sTBEzk9xQJSGlFKUaBVL72gWR0CgYKYp+c6OdX2UKGgGaAloD0MIuamB5rOzcUCUhpRSlGgVTR0BaBZHQKBg9Wf9P1t1fZQoaAZoCWgPQwjsoX2sYNttQJSGlFKUaBVL42gWR0CgYP2ovSMMdX2UKGgGaAloD0MI+FPjpVvMckCUhpRSlGgVTQ0BaBZHQKBhgRJVbRp1fZQoaAZoCWgPQwjcZFQZhlRwQJSGlFKUaBVL/2gWR0CgYg9ovi97dX2UKGgGaAloD0MILj2a6gl7cUCUhpRSlGgVS+5oFkdAoGJdJ6IFeXV9lChoBmgJaA9DCG4VxEDXuHBAlIaUUpRoFUvwaBZHQKBiandfsu51fZQoaAZoCWgPQwhBDHTti9twQJSGlFKUaBVL6WgWR0CgYtAymALBdX2UKGgGaAloD0MIayxhbQxkcUCUhpRSlGgVS9toFkdAoGL1XRw6yXV9lChoBmgJaA9DCAfTMHxEwG9AlIaUUpRoFUv+aBZHQKBjWFKTSst1fZQoaAZoCWgPQwgOorWiDUtxQJSGlFKUaBVL82gWR0CgY2li8WbgdX2UKGgGaAloD0MIAyMva2Jrc0CUhpRSlGgVTQIBaBZHQKBjjGIbfgt1fZQoaAZoCWgPQwih2uBE9BhzQJSGlFKUaBVL7mgWR0CgY5mMfigkdX2UKGgGaAloD0MITYV4JN5yb0CUhpRSlGgVS/ZoFkdAoGP6bx3FDXV9lChoBmgJaA9DCGaFIt0PR3BAlIaUUpRoFUvraBZHQKBkC2w3YL91fZQoaAZoCWgPQwgDXmbYqFFyQJSGlFKUaBVL+WgWR0CgZJqJMxoJdX2UKGgGaAloD0MIXg8mxccOcUCUhpRSlGgVS/1oFkdAoGS4vBacJHV9lChoBmgJaA9DCF3Cobe4WXJAlIaUUpRoFUvcaBZHQKBk0ir1dxB1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }