{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd7a088480>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670546542282878394, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2RhcnRoL21pbmljb25kYTMvZW52cy9tbGVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2RhcnRoL21pbmljb25kYTMvZW52cy9tbGVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2Ne61Ihkb0CUhpRSlIwBbJRLx4wBdJRHQJQ14Mz/IbR1fZQoaAZoCWgPQwjfUznt6RRyQJSGlFKUaBVLv2gWR0CUNiM1TBIndX2UKGgGaAloD0MI1lJA2r+qcECUhpRSlGgVS8RoFkdAlDYpQxesxXV9lChoBmgJaA9DCIbnpWJjSnFAlIaUUpRoFUu+aBZHQJQ2MZydWhh1fZQoaAZoCWgPQwjeHK7VHgp0QJSGlFKUaBVL1WgWR0CUNlTY/Vy4dX2UKGgGaAloD0MIL6cExGS8c0CUhpRSlGgVS8xoFkdAlDZsmfGuLnV9lChoBmgJaA9DCF3iyANRwnJAlIaUUpRoFUvpaBZHQJQ2drzoUzt1fZQoaAZoCWgPQwhlcf+RaS1tQJSGlFKUaBVL3WgWR0CUNoZiNKh+dX2UKGgGaAloD0MI4PJYMzIgckCUhpRSlGgVS8RoFkdAlDalB2OhkHV9lChoBmgJaA9DCPKYgcp4TXJAlIaUUpRoFUvOaBZHQJQ24+otL+R1fZQoaAZoCWgPQwjToj7JHV4swJSGlFKUaBVLdGgWR0CUNvVnmJWOdX2UKGgGaAloD0MIEJIFTKCBcECUhpRSlGgVS8JoFkdAlDcGbwz+FXV9lChoBmgJaA9DCNBjlGeeC3NAlIaUUpRoFUu5aBZHQJQ3JdkauOl1fZQoaAZoCWgPQwg7iQj/omxzQJSGlFKUaBVLrmgWR0CUN/aWHDaXdX2UKGgGaAloD0MII9i4/p2kckCUhpRSlGgVS9BoFkdAlDgGp++dsnV9lChoBmgJaA9DCBZp4h3gYnJAlIaUUpRoFUvYaBZHQJQ4Ec4o7V91fZQoaAZoCWgPQwg5e2e0FdhxQJSGlFKUaBVL5WgWR0CUODQP7N0OdX2UKGgGaAloD0MI4GdcOJDLb0CUhpRSlGgVS9JoFkdAlDhQ/cFhX3V9lChoBmgJaA9DCPjB+dQxuW5AlIaUUpRoFUvCaBZHQJQ4WYu01Il1fZQoaAZoCWgPQwg5fT1fsyd0QJSGlFKUaBVL2mgWR0CUOG+WnjyXdX2UKGgGaAloD0MIo8ow7gbZcUCUhpRSlGgVS85oFkdAlDibXHzYmXV9lChoBmgJaA9DCClBf6EHlnFAlIaUUpRoFUvmaBZHQJQ41CVrylN1fZQoaAZoCWgPQwjtgywL5iByQJSGlFKUaBVL32gWR0CUONysS00FdX2UKGgGaAloD0MI83LYfUcncUCUhpRSlGgVS7xoFkdAlDjmrKeTV3V9lChoBmgJaA9DCMHj27sGOHNAlIaUUpRoFUu7aBZHQJQ49eiSJTF1fZQoaAZoCWgPQwjUYBqGj49xQJSGlFKUaBVL8mgWR0CUOSyd4FA3dX2UKGgGaAloD0MI1As+zQmZcUCUhpRSlGgVS8BoFkdAlDk0VFhG6XV9lChoBmgJaA9DCJdV2AwwLHJAlIaUUpRoFUvlaBZHQJRTEsH0K7Z1fZQoaAZoCWgPQwhCCTNt/xFvQJSGlFKUaBVLvWgWR0CUU7kI5YHPdX2UKGgGaAloD0MIvAZ96a2QcUCUhpRSlGgVS8loFkdAlFPDAvcrRXV9lChoBmgJaA9DCDyInSl0ZXBAlIaUUpRoFUvKaBZHQJRT1M6BAfN1fZQoaAZoCWgPQwjMzw1NGYtzQJSGlFKUaBVL1mgWR0CUVCh60IC2dX2UKGgGaAloD0MIVi3pKAeIcECUhpRSlGgVS9BoFkdAlFRTAN5MUXV9lChoBmgJaA9DCGXjwRb7WnNAlIaUUpRoFUvXaBZHQJRUUxyn1nN1fZQoaAZoCWgPQwjsaBzq9+tyQJSGlFKUaBVL7GgWR0CUVIdTYNAkdX2UKGgGaAloD0MIkiHH1jMSc0CUhpRSlGgVS9ZoFkdAlFSVpPAO8XV9lChoBmgJaA9DCJEm3gGe429AlIaUUpRoFUvOaBZHQJRUv9Q40dl1fZQoaAZoCWgPQwip3EQtzSFzQJSGlFKUaBVLyWgWR0CUVM3Sa3I/dX2UKGgGaAloD0MIq15+p0nqcUCUhpRSlGgVS95oFkdAlFTlAZ88cXV9lChoBmgJaA9DCPn2rkGfxXJAlIaUUpRoFUvBaBZHQJRU9VKf4AV1fZQoaAZoCWgPQwj1TC8xllhzQJSGlFKUaBVL6WgWR0CUVRUqx1PndX2UKGgGaAloD0MIp658lmePcECUhpRSlGgVS95oFkdAlFVMZpBX0XV9lChoBmgJaA9DCAebOo8KJ3BAlIaUUpRoFUvVaBZHQJRVdHnU2DR1fZQoaAZoCWgPQwgVONkGro1xQJSGlFKUaBVLzGgWR0CUVgKLsKLLdX2UKGgGaAloD0MIz6RN1f0Ec0CUhpRSlGgVS8RoFkdAlFYGdiDujXV9lChoBmgJaA9DCL76eOj70HNAlIaUUpRoFUvOaBZHQJRWFFb3XZp1fZQoaAZoCWgPQwh4JjRJLC9yQJSGlFKUaBVLwWgWR0CUVnn/1g6VdX2UKGgGaAloD0MIiV5GsVz2cECUhpRSlGgVS9ZoFkdAlFaRMewLVnV9lChoBmgJaA9DCKn7AKS2J3NAlIaUUpRoFUvSaBZHQJRWr238XN11fZQoaAZoCWgPQwg3je21oAhwQJSGlFKUaBVLxmgWR0CUVs/B3zMBdX2UKGgGaAloD0MIlZuopTmjcUCUhpRSlGgVS7poFkdAlFbo5YHPeHV9lChoBmgJaA9DCCLDKt7Ibm9AlIaUUpRoFUvYaBZHQJRW9vaURnR1fZQoaAZoCWgPQwizJ4HNufpnQJSGlFKUaBVN6ANoFkdAlFclotcv/XV9lChoBmgJaA9DCDI5tTOM6nNAlIaUUpRoFUvYaBZHQJRXUlRgqmV1fZQoaAZoCWgPQwg9Rnnm5cNwQJSGlFKUaBVLyGgWR0CUV1dcB2fTdX2UKGgGaAloD0MI24e85aouc0CUhpRSlGgVS+hoFkdAlFda4x1xKnV9lChoBmgJaA9DCFiR0QFJn3FAlIaUUpRoFUvVaBZHQJRXWsFMZgp1fZQoaAZoCWgPQwivX7Ab9hNzQJSGlFKUaBVLxGgWR0CUV3xT850bdX2UKGgGaAloD0MI26UNh+WVcUCUhpRSlGgVS+loFkdAlFf+PzWf9XV9lChoBmgJaA9DCIoEU82sXm5AlIaUUpRoFUvHaBZHQJRYKez2OAB1fZQoaAZoCWgPQwgxfa8hOAhyQJSGlFKUaBVLymgWR0CUWEDArQPadX2UKGgGaAloD0MIPx9lxIXqb0CUhpRSlGgVS85oFkdAlFhBEv0yxnV9lChoBmgJaA9DCOc4twm3SXJAlIaUUpRoFUu6aBZHQJRYnfLs8gZ1fZQoaAZoCWgPQwj2twTg3w10QJSGlFKUaBVL02gWR0CUWLMkyDZldX2UKGgGaAloD0MIox03/K7UckCUhpRSlGgVS9poFkdAlFjXrt3OfXV9lChoBmgJaA9DCCgqG9ZU6nBAlIaUUpRoFUvIaBZHQJRY9VzZHut1fZQoaAZoCWgPQwitM74vrk1xQJSGlFKUaBVLzWgWR0CUWQ580DU3dX2UKGgGaAloD0MINbdCWA3KcECUhpRSlGgVS9poFkdAlFkOejEehnV9lChoBmgJaA9DCFg89UiDH3JAlIaUUpRoFUu1aBZHQJRZK8VYZEV1fZQoaAZoCWgPQwhAbVSnAyBzQJSGlFKUaBVLw2gWR0CUWUyYoiLVdX2UKGgGaAloD0MIGy/dJEbQckCUhpRSlGgVS9RoFkdAlFl1uejEenV9lChoBmgJaA9DCEsFFVX/nnJAlIaUUpRoFUvpaBZHQJRZfkwN9Yx1fZQoaAZoCWgPQwj35GGhlu1xQJSGlFKUaBVL32gWR0CUWY0WdmQKdX2UKGgGaAloD0MIXHaIfxjockCUhpRSlGgVS89oFkdAlFmRppN9IHV9lChoBmgJaA9DCNYe9kKBsW9AlIaUUpRoFUvEaBZHQJRaMw7DEWJ1fZQoaAZoCWgPQwjf4AuT6QN0QJSGlFKUaBVL32gWR0CUWj446wMZdX2UKGgGaAloD0MIGjBI+rRAb0CUhpRSlGgVS95oFkdAlFpmIfr8i3V9lChoBmgJaA9DCOfEHtrHEiNAlIaUUpRoFUtvaBZHQJRabEYO2Ap1fZQoaAZoCWgPQwj/klSmGPdvQJSGlFKUaBVLvmgWR0CUWocpLEk0dX2UKGgGaAloD0MIwQEtXcGscUCUhpRSlGgVS8VoFkdAlFrZIxxku3V9lChoBmgJaA9DCBtivOZVzHBAlIaUUpRoFUvZaBZHQJRa6mHgxah1fZQoaAZoCWgPQwhz1qccU+ZyQJSGlFKUaBVLvGgWR0CUWvtBfKISdX2UKGgGaAloD0MI28LzUjHCcECUhpRSlGgVS9toFkdAlFs2/i5uqHV9lChoBmgJaA9DCLLYJhVNC3RAlIaUUpRoFUvKaBZHQJRbRUS7GvR1fZQoaAZoCWgPQwh8tg4O9rdxQJSGlFKUaBVL6GgWR0CUW3fxc3VDdX2UKGgGaAloD0MILnHkgciPckCUhpRSlGgVS8VoFkdAlFuUlNUOu3V9lChoBmgJaA9DCNZvJqbLanBAlIaUUpRoFUvlaBZHQJRcBEUj9n91fZQoaAZoCWgPQwh0tRX7yy5zQJSGlFKUaBVL82gWR0CUXDNJvo/zdX2UKGgGaAloD0MIndfYJWo2ckCUhpRSlGgVS7VoFkdAlFw6GQCCBnV9lChoBmgJaA9DCD+qYb+nEXJAlIaUUpRoFUvAaBZHQJRcZ14gRsd1fZQoaAZoCWgPQwiR8SiVsIhyQJSGlFKUaBVLrWgWR0CUXHupjtojdX2UKGgGaAloD0MIvRqgNFSfcECUhpRSlGgVS8JoFkdAlFyaJl8PWnV9lChoBmgJaA9DCBE66BLOVnBAlIaUUpRoFUvQaBZHQJRcvKyOaOR1fZQoaAZoCWgPQwhyi/m5IbNwQJSGlFKUaBVLwmgWR0CUXQjyWiUQdX2UKGgGaAloD0MI86/llWtOcUCUhpRSlGgVS8doFkdAlF0qfvnbI3V9lChoBmgJaA9DCDXSUnk7VHJAlIaUUpRoFUuzaBZHQJRdToNd7fJ1fZQoaAZoCWgPQwjzV8hcmT5vQJSGlFKUaBVL1mgWR0CUXWiRnvlVdX2UKGgGaAloD0MIX0TbMTX+cUCUhpRSlGgVS8JoFkdAlF1sDB/I83V9lChoBmgJaA9DCPnAjv8Cnm9AlIaUUpRoFUu2aBZHQJRdicawUxp1fZQoaAZoCWgPQwgQP/89+IpyQJSGlFKUaBVLtWgWR0CUXaHvttygdWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2RhcnRoL21pbmljb25kYTMvZW52cy9tbGVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2RhcnRoL21pbmljb25kYTMvZW52cy9tbGVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }