Add new SentenceTransformer model
Browse files- README.md +106 -98
- model.safetensors +1 -1
README.md
CHANGED
@@ -348,49 +348,49 @@ model-index:
|
|
348 |
type: mteb/AILA_casedocs
|
349 |
metrics:
|
350 |
- type: cosine_accuracy@1
|
351 |
-
value: 0.
|
352 |
name: Cosine Accuracy@1
|
353 |
- type: cosine_accuracy@3
|
354 |
-
value: 0.
|
355 |
name: Cosine Accuracy@3
|
356 |
- type: cosine_accuracy@5
|
357 |
value: 0.38
|
358 |
name: Cosine Accuracy@5
|
359 |
- type: cosine_accuracy@10
|
360 |
-
value: 0.
|
361 |
name: Cosine Accuracy@10
|
362 |
- type: cosine_precision@1
|
363 |
-
value: 0.
|
364 |
name: Cosine Precision@1
|
365 |
- type: cosine_precision@3
|
366 |
-
value: 0.
|
367 |
name: Cosine Precision@3
|
368 |
- type: cosine_precision@5
|
369 |
-
value: 0.
|
370 |
name: Cosine Precision@5
|
371 |
- type: cosine_precision@10
|
372 |
-
value: 0.
|
373 |
name: Cosine Precision@10
|
374 |
- type: cosine_recall@1
|
375 |
-
value: 0.
|
376 |
name: Cosine Recall@1
|
377 |
- type: cosine_recall@3
|
378 |
-
value: 0.
|
379 |
name: Cosine Recall@3
|
380 |
- type: cosine_recall@5
|
381 |
-
value: 0.
|
382 |
name: Cosine Recall@5
|
383 |
- type: cosine_recall@10
|
384 |
-
value: 0.
|
385 |
name: Cosine Recall@10
|
386 |
- type: cosine_ndcg@10
|
387 |
-
value: 0.
|
388 |
name: Cosine Ndcg@10
|
389 |
- type: cosine_mrr@10
|
390 |
-
value: 0.
|
391 |
name: Cosine Mrr@10
|
392 |
- type: cosine_map@100
|
393 |
-
value: 0.
|
394 |
name: Cosine Map@100
|
395 |
- task:
|
396 |
type: information-retrieval
|
@@ -400,49 +400,49 @@ model-index:
|
|
400 |
type: mteb/AILA_statutes
|
401 |
metrics:
|
402 |
- type: cosine_accuracy@1
|
403 |
-
value: 0.
|
404 |
name: Cosine Accuracy@1
|
405 |
- type: cosine_accuracy@3
|
406 |
-
value: 0.
|
407 |
name: Cosine Accuracy@3
|
408 |
- type: cosine_accuracy@5
|
409 |
-
value: 0.
|
410 |
name: Cosine Accuracy@5
|
411 |
- type: cosine_accuracy@10
|
412 |
value: 0.68
|
413 |
name: Cosine Accuracy@10
|
414 |
- type: cosine_precision@1
|
415 |
-
value: 0.
|
416 |
name: Cosine Precision@1
|
417 |
- type: cosine_precision@3
|
418 |
-
value: 0.
|
419 |
name: Cosine Precision@3
|
420 |
- type: cosine_precision@5
|
421 |
-
value: 0.
|
422 |
name: Cosine Precision@5
|
423 |
- type: cosine_precision@10
|
424 |
-
value: 0.
|
425 |
name: Cosine Precision@10
|
426 |
- type: cosine_recall@1
|
427 |
-
value: 0.
|
428 |
name: Cosine Recall@1
|
429 |
- type: cosine_recall@3
|
430 |
-
value: 0.
|
431 |
name: Cosine Recall@3
|
432 |
- type: cosine_recall@5
|
433 |
-
value: 0.
|
434 |
name: Cosine Recall@5
|
435 |
- type: cosine_recall@10
|
436 |
-
value: 0.
|
437 |
name: Cosine Recall@10
|
438 |
- type: cosine_ndcg@10
|
439 |
-
value: 0.
|
440 |
name: Cosine Ndcg@10
|
441 |
- type: cosine_mrr@10
|
442 |
-
value: 0.
|
443 |
name: Cosine Mrr@10
|
444 |
- type: cosine_map@100
|
445 |
-
value: 0.
|
446 |
name: Cosine Map@100
|
447 |
- task:
|
448 |
type: information-retrieval
|
@@ -452,49 +452,49 @@ model-index:
|
|
452 |
type: mteb/legalbench_consumer_contracts_qa
|
453 |
metrics:
|
454 |
- type: cosine_accuracy@1
|
455 |
-
value: 0.
|
456 |
name: Cosine Accuracy@1
|
457 |
- type: cosine_accuracy@3
|
458 |
-
value: 0.
|
459 |
name: Cosine Accuracy@3
|
460 |
- type: cosine_accuracy@5
|
461 |
-
value: 0.
|
462 |
name: Cosine Accuracy@5
|
463 |
- type: cosine_accuracy@10
|
464 |
-
value: 0.
|
465 |
name: Cosine Accuracy@10
|
466 |
- type: cosine_precision@1
|
467 |
-
value: 0.
|
468 |
name: Cosine Precision@1
|
469 |
- type: cosine_precision@3
|
470 |
-
value: 0.
|
471 |
name: Cosine Precision@3
|
472 |
- type: cosine_precision@5
|
473 |
-
value: 0.
|
474 |
name: Cosine Precision@5
|
475 |
- type: cosine_precision@10
|
476 |
-
value: 0.
|
477 |
name: Cosine Precision@10
|
478 |
- type: cosine_recall@1
|
479 |
-
value: 0.
|
480 |
name: Cosine Recall@1
|
481 |
- type: cosine_recall@3
|
482 |
-
value: 0.
|
483 |
name: Cosine Recall@3
|
484 |
- type: cosine_recall@5
|
485 |
-
value: 0.
|
486 |
name: Cosine Recall@5
|
487 |
- type: cosine_recall@10
|
488 |
-
value: 0.
|
489 |
name: Cosine Recall@10
|
490 |
- type: cosine_ndcg@10
|
491 |
-
value: 0.
|
492 |
name: Cosine Ndcg@10
|
493 |
- type: cosine_mrr@10
|
494 |
-
value: 0.
|
495 |
name: Cosine Mrr@10
|
496 |
- type: cosine_map@100
|
497 |
-
value: 0.
|
498 |
name: Cosine Map@100
|
499 |
- task:
|
500 |
type: information-retrieval
|
@@ -504,49 +504,49 @@ model-index:
|
|
504 |
type: mteb/legalbench_corporate_lobbying
|
505 |
metrics:
|
506 |
- type: cosine_accuracy@1
|
507 |
-
value: 0.
|
508 |
name: Cosine Accuracy@1
|
509 |
- type: cosine_accuracy@3
|
510 |
-
value: 0.
|
511 |
name: Cosine Accuracy@3
|
512 |
- type: cosine_accuracy@5
|
513 |
-
value: 0.
|
514 |
name: Cosine Accuracy@5
|
515 |
- type: cosine_accuracy@10
|
516 |
-
value: 0.
|
517 |
name: Cosine Accuracy@10
|
518 |
- type: cosine_precision@1
|
519 |
-
value: 0.
|
520 |
name: Cosine Precision@1
|
521 |
- type: cosine_precision@3
|
522 |
-
value: 0.
|
523 |
name: Cosine Precision@3
|
524 |
- type: cosine_precision@5
|
525 |
-
value: 0.
|
526 |
name: Cosine Precision@5
|
527 |
- type: cosine_precision@10
|
528 |
-
value: 0.
|
529 |
name: Cosine Precision@10
|
530 |
- type: cosine_recall@1
|
531 |
-
value: 0.
|
532 |
name: Cosine Recall@1
|
533 |
- type: cosine_recall@3
|
534 |
-
value: 0.
|
535 |
name: Cosine Recall@3
|
536 |
- type: cosine_recall@5
|
537 |
-
value: 0.
|
538 |
name: Cosine Recall@5
|
539 |
- type: cosine_recall@10
|
540 |
-
value: 0.
|
541 |
name: Cosine Recall@10
|
542 |
- type: cosine_ndcg@10
|
543 |
-
value: 0.
|
544 |
name: Cosine Ndcg@10
|
545 |
- type: cosine_mrr@10
|
546 |
-
value: 0.
|
547 |
name: Cosine Mrr@10
|
548 |
- type: cosine_map@100
|
549 |
-
value: 0.
|
550 |
name: Cosine Map@100
|
551 |
- task:
|
552 |
type: information-retrieval
|
@@ -556,49 +556,49 @@ model-index:
|
|
556 |
type: mteb/legal_summarization
|
557 |
metrics:
|
558 |
- type: cosine_accuracy@1
|
559 |
-
value: 0.
|
560 |
name: Cosine Accuracy@1
|
561 |
- type: cosine_accuracy@3
|
562 |
-
value: 0.
|
563 |
name: Cosine Accuracy@3
|
564 |
- type: cosine_accuracy@5
|
565 |
-
value: 0.
|
566 |
name: Cosine Accuracy@5
|
567 |
- type: cosine_accuracy@10
|
568 |
-
value: 0.
|
569 |
name: Cosine Accuracy@10
|
570 |
- type: cosine_precision@1
|
571 |
-
value: 0.
|
572 |
name: Cosine Precision@1
|
573 |
- type: cosine_precision@3
|
574 |
-
value: 0.
|
575 |
name: Cosine Precision@3
|
576 |
- type: cosine_precision@5
|
577 |
-
value: 0.
|
578 |
name: Cosine Precision@5
|
579 |
- type: cosine_precision@10
|
580 |
-
value: 0.
|
581 |
name: Cosine Precision@10
|
582 |
- type: cosine_recall@1
|
583 |
-
value: 0.
|
584 |
name: Cosine Recall@1
|
585 |
- type: cosine_recall@3
|
586 |
-
value: 0.
|
587 |
name: Cosine Recall@3
|
588 |
- type: cosine_recall@5
|
589 |
-
value: 0.
|
590 |
name: Cosine Recall@5
|
591 |
- type: cosine_recall@10
|
592 |
-
value: 0.
|
593 |
name: Cosine Recall@10
|
594 |
- type: cosine_ndcg@10
|
595 |
-
value: 0.
|
596 |
name: Cosine Ndcg@10
|
597 |
- type: cosine_mrr@10
|
598 |
-
value: 0.
|
599 |
name: Cosine Mrr@10
|
600 |
- type: cosine_map@100
|
601 |
-
value: 0.
|
602 |
name: Cosine Map@100
|
603 |
---
|
604 |
|
@@ -709,21 +709,21 @@ You can finetune this model on your own dataset.
|
|
709 |
|
710 |
| Metric | mteb/AILA_casedocs | mteb/AILA_statutes | mteb/legalbench_consumer_contracts_qa | mteb/legalbench_corporate_lobbying | mteb/legal_summarization |
|
711 |
|:--------------------|:-------------------|:-------------------|:--------------------------------------|:-----------------------------------|:-------------------------|
|
712 |
-
| cosine_accuracy@1 | 0.
|
713 |
-
| cosine_accuracy@3 | 0.
|
714 |
-
| cosine_accuracy@5 | 0.38 | 0.
|
715 |
-
| cosine_accuracy@10 | 0.
|
716 |
-
| cosine_precision@1 | 0.
|
717 |
-
| cosine_precision@3 | 0.
|
718 |
-
| cosine_precision@5 | 0.
|
719 |
-
| cosine_precision@10 | 0.
|
720 |
-
| cosine_recall@1 | 0.
|
721 |
-
| cosine_recall@3 | 0.
|
722 |
-
| cosine_recall@5 | 0.
|
723 |
-
| cosine_recall@10 | 0.
|
724 |
-
| **cosine_ndcg@10** | **0.
|
725 |
-
| cosine_mrr@10 | 0.
|
726 |
-
| cosine_map@100 | 0.
|
727 |
|
728 |
<!--
|
729 |
## Bias, Risks and Limitations
|
@@ -939,7 +939,7 @@ You can finetune this model on your own dataset.
|
|
939 |
- `eval_strategy`: steps
|
940 |
- `per_device_train_batch_size`: 64
|
941 |
- `learning_rate`: 1e-06
|
942 |
-
- `num_train_epochs`:
|
943 |
- `warmup_ratio`: 0.1
|
944 |
- `fp16`: True
|
945 |
- `batch_sampler`: no_duplicates
|
@@ -964,7 +964,7 @@ You can finetune this model on your own dataset.
|
|
964 |
- `adam_beta2`: 0.999
|
965 |
- `adam_epsilon`: 1e-08
|
966 |
- `max_grad_norm`: 1.0
|
967 |
-
- `num_train_epochs`:
|
968 |
- `max_steps`: -1
|
969 |
- `lr_scheduler_type`: linear
|
970 |
- `lr_scheduler_kwargs`: {}
|
@@ -1067,14 +1067,22 @@ You can finetune this model on your own dataset.
|
|
1067 |
| Epoch | Step | Training Loss | mteb/AILA_casedocs_cosine_ndcg@10 | mteb/AILA_statutes_cosine_ndcg@10 | mteb/legalbench_consumer_contracts_qa_cosine_ndcg@10 | mteb/legalbench_corporate_lobbying_cosine_ndcg@10 | mteb/legal_summarization_cosine_ndcg@10 |
|
1068 |
|:------:|:----:|:-------------:|:---------------------------------:|:---------------------------------:|:----------------------------------------------------:|:-------------------------------------------------:|:---------------------------------------:|
|
1069 |
| 0 | 0 | - | 0.1972 | 0.2052 | 0.6560 | 0.8641 | 0.5900 |
|
1070 |
-
| 0.1196 | 100 | - | 0.
|
1071 |
-
| 0.2392 | 200 | - | 0.
|
1072 |
-
| 0.3589 | 300 | - | 0.
|
1073 |
-
| 0.4785 | 400 | - | 0.
|
1074 |
-
| 0.5981 | 500 | 4.
|
1075 |
-
| 0.7177 | 600 | - | 0.
|
1076 |
-
| 0.8373 | 700 | - | 0.
|
1077 |
-
| 0.9569 | 800 | - | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1078 |
|
1079 |
|
1080 |
### Framework Versions
|
|
|
348 |
type: mteb/AILA_casedocs
|
349 |
metrics:
|
350 |
- type: cosine_accuracy@1
|
351 |
+
value: 0.32
|
352 |
name: Cosine Accuracy@1
|
353 |
- type: cosine_accuracy@3
|
354 |
+
value: 0.36
|
355 |
name: Cosine Accuracy@3
|
356 |
- type: cosine_accuracy@5
|
357 |
value: 0.38
|
358 |
name: Cosine Accuracy@5
|
359 |
- type: cosine_accuracy@10
|
360 |
+
value: 0.54
|
361 |
name: Cosine Accuracy@10
|
362 |
- type: cosine_precision@1
|
363 |
+
value: 0.32
|
364 |
name: Cosine Precision@1
|
365 |
- type: cosine_precision@3
|
366 |
+
value: 0.2
|
367 |
name: Cosine Precision@3
|
368 |
- type: cosine_precision@5
|
369 |
+
value: 0.14
|
370 |
name: Cosine Precision@5
|
371 |
- type: cosine_precision@10
|
372 |
+
value: 0.106
|
373 |
name: Cosine Precision@10
|
374 |
- type: cosine_recall@1
|
375 |
+
value: 0.10011421911421912
|
376 |
name: Cosine Recall@1
|
377 |
- type: cosine_recall@3
|
378 |
+
value: 0.173986013986014
|
379 |
name: Cosine Recall@3
|
380 |
- type: cosine_recall@5
|
381 |
+
value: 0.20522843822843825
|
382 |
name: Cosine Recall@5
|
383 |
- type: cosine_recall@10
|
384 |
+
value: 0.30841841491841493
|
385 |
name: Cosine Recall@10
|
386 |
- type: cosine_ndcg@10
|
387 |
+
value: 0.26821891394168423
|
388 |
name: Cosine Ndcg@10
|
389 |
- type: cosine_mrr@10
|
390 |
+
value: 0.36276984126984124
|
391 |
name: Cosine Mrr@10
|
392 |
- type: cosine_map@100
|
393 |
+
value: 0.23063570433429445
|
394 |
name: Cosine Map@100
|
395 |
- task:
|
396 |
type: information-retrieval
|
|
|
400 |
type: mteb/AILA_statutes
|
401 |
metrics:
|
402 |
- type: cosine_accuracy@1
|
403 |
+
value: 0.26
|
404 |
name: Cosine Accuracy@1
|
405 |
- type: cosine_accuracy@3
|
406 |
+
value: 0.42
|
407 |
name: Cosine Accuracy@3
|
408 |
- type: cosine_accuracy@5
|
409 |
+
value: 0.52
|
410 |
name: Cosine Accuracy@5
|
411 |
- type: cosine_accuracy@10
|
412 |
value: 0.68
|
413 |
name: Cosine Accuracy@10
|
414 |
- type: cosine_precision@1
|
415 |
+
value: 0.26
|
416 |
name: Cosine Precision@1
|
417 |
- type: cosine_precision@3
|
418 |
+
value: 0.15999999999999998
|
419 |
name: Cosine Precision@3
|
420 |
- type: cosine_precision@5
|
421 |
+
value: 0.132
|
422 |
name: Cosine Precision@5
|
423 |
- type: cosine_precision@10
|
424 |
+
value: 0.10800000000000001
|
425 |
name: Cosine Precision@10
|
426 |
- type: cosine_recall@1
|
427 |
+
value: 0.06499999999999999
|
428 |
name: Cosine Recall@1
|
429 |
- type: cosine_recall@3
|
430 |
+
value: 0.125
|
431 |
name: Cosine Recall@3
|
432 |
- type: cosine_recall@5
|
433 |
+
value: 0.16399999999999998
|
434 |
name: Cosine Recall@5
|
435 |
- type: cosine_recall@10
|
436 |
+
value: 0.256
|
437 |
name: Cosine Recall@10
|
438 |
- type: cosine_ndcg@10
|
439 |
+
value: 0.22688341584203112
|
440 |
name: Cosine Ndcg@10
|
441 |
- type: cosine_mrr@10
|
442 |
+
value: 0.3726904761904762
|
443 |
name: Cosine Mrr@10
|
444 |
- type: cosine_map@100
|
445 |
+
value: 0.19663910082742547
|
446 |
name: Cosine Map@100
|
447 |
- task:
|
448 |
type: information-retrieval
|
|
|
452 |
type: mteb/legalbench_consumer_contracts_qa
|
453 |
metrics:
|
454 |
- type: cosine_accuracy@1
|
455 |
+
value: 0.45202020202020204
|
456 |
name: Cosine Accuracy@1
|
457 |
- type: cosine_accuracy@3
|
458 |
+
value: 0.6843434343434344
|
459 |
name: Cosine Accuracy@3
|
460 |
- type: cosine_accuracy@5
|
461 |
+
value: 0.7878787878787878
|
462 |
name: Cosine Accuracy@5
|
463 |
- type: cosine_accuracy@10
|
464 |
+
value: 0.8661616161616161
|
465 |
name: Cosine Accuracy@10
|
466 |
- type: cosine_precision@1
|
467 |
+
value: 0.45202020202020204
|
468 |
name: Cosine Precision@1
|
469 |
- type: cosine_precision@3
|
470 |
+
value: 0.2281144781144781
|
471 |
name: Cosine Precision@3
|
472 |
- type: cosine_precision@5
|
473 |
+
value: 0.15757575757575756
|
474 |
name: Cosine Precision@5
|
475 |
- type: cosine_precision@10
|
476 |
+
value: 0.0866161616161616
|
477 |
name: Cosine Precision@10
|
478 |
- type: cosine_recall@1
|
479 |
+
value: 0.45202020202020204
|
480 |
name: Cosine Recall@1
|
481 |
- type: cosine_recall@3
|
482 |
+
value: 0.6843434343434344
|
483 |
name: Cosine Recall@3
|
484 |
- type: cosine_recall@5
|
485 |
+
value: 0.7878787878787878
|
486 |
name: Cosine Recall@5
|
487 |
- type: cosine_recall@10
|
488 |
+
value: 0.8661616161616161
|
489 |
name: Cosine Recall@10
|
490 |
- type: cosine_ndcg@10
|
491 |
+
value: 0.6554316826573866
|
492 |
name: Cosine Ndcg@10
|
493 |
- type: cosine_mrr@10
|
494 |
+
value: 0.5881553631553632
|
495 |
name: Cosine Mrr@10
|
496 |
- type: cosine_map@100
|
497 |
+
value: 0.5945229817141628
|
498 |
name: Cosine Map@100
|
499 |
- task:
|
500 |
type: information-retrieval
|
|
|
504 |
type: mteb/legalbench_corporate_lobbying
|
505 |
metrics:
|
506 |
- type: cosine_accuracy@1
|
507 |
+
value: 0.7382352941176471
|
508 |
name: Cosine Accuracy@1
|
509 |
- type: cosine_accuracy@3
|
510 |
+
value: 0.8941176470588236
|
511 |
name: Cosine Accuracy@3
|
512 |
- type: cosine_accuracy@5
|
513 |
+
value: 0.9294117647058824
|
514 |
name: Cosine Accuracy@5
|
515 |
- type: cosine_accuracy@10
|
516 |
+
value: 0.9647058823529412
|
517 |
name: Cosine Accuracy@10
|
518 |
- type: cosine_precision@1
|
519 |
+
value: 0.7382352941176471
|
520 |
name: Cosine Precision@1
|
521 |
- type: cosine_precision@3
|
522 |
+
value: 0.2980392156862745
|
523 |
name: Cosine Precision@3
|
524 |
- type: cosine_precision@5
|
525 |
+
value: 0.18588235294117644
|
526 |
name: Cosine Precision@5
|
527 |
- type: cosine_precision@10
|
528 |
+
value: 0.09647058823529411
|
529 |
name: Cosine Precision@10
|
530 |
- type: cosine_recall@1
|
531 |
+
value: 0.7382352941176471
|
532 |
name: Cosine Recall@1
|
533 |
- type: cosine_recall@3
|
534 |
+
value: 0.8941176470588236
|
535 |
name: Cosine Recall@3
|
536 |
- type: cosine_recall@5
|
537 |
+
value: 0.9294117647058824
|
538 |
name: Cosine Recall@5
|
539 |
- type: cosine_recall@10
|
540 |
+
value: 0.9647058823529412
|
541 |
name: Cosine Recall@10
|
542 |
- type: cosine_ndcg@10
|
543 |
+
value: 0.8568617986155895
|
544 |
name: Cosine Ndcg@10
|
545 |
- type: cosine_mrr@10
|
546 |
+
value: 0.8217670401493932
|
547 |
name: Cosine Mrr@10
|
548 |
- type: cosine_map@100
|
549 |
+
value: 0.822962290292461
|
550 |
name: Cosine Map@100
|
551 |
- task:
|
552 |
type: information-retrieval
|
|
|
556 |
type: mteb/legal_summarization
|
557 |
metrics:
|
558 |
- type: cosine_accuracy@1
|
559 |
+
value: 0.49295774647887325
|
560 |
name: Cosine Accuracy@1
|
561 |
- type: cosine_accuracy@3
|
562 |
+
value: 0.647887323943662
|
563 |
name: Cosine Accuracy@3
|
564 |
- type: cosine_accuracy@5
|
565 |
+
value: 0.7112676056338029
|
566 |
name: Cosine Accuracy@5
|
567 |
- type: cosine_accuracy@10
|
568 |
+
value: 0.795774647887324
|
569 |
name: Cosine Accuracy@10
|
570 |
- type: cosine_precision@1
|
571 |
+
value: 0.49295774647887325
|
572 |
name: Cosine Precision@1
|
573 |
- type: cosine_precision@3
|
574 |
+
value: 0.23708920187793425
|
575 |
name: Cosine Precision@3
|
576 |
- type: cosine_precision@5
|
577 |
+
value: 0.1640845070422535
|
578 |
name: Cosine Precision@5
|
579 |
- type: cosine_precision@10
|
580 |
+
value: 0.09859154929577464
|
581 |
name: Cosine Precision@10
|
582 |
- type: cosine_recall@1
|
583 |
+
value: 0.437591076763612
|
584 |
name: Cosine Recall@1
|
585 |
- type: cosine_recall@3
|
586 |
+
value: 0.570583729650631
|
587 |
name: Cosine Recall@3
|
588 |
- type: cosine_recall@5
|
589 |
+
value: 0.6355626181330407
|
590 |
name: Cosine Recall@5
|
591 |
- type: cosine_recall@10
|
592 |
+
value: 0.7263897780623133
|
593 |
name: Cosine Recall@10
|
594 |
- type: cosine_ndcg@10
|
595 |
+
value: 0.5978698544115026
|
596 |
name: Cosine Ndcg@10
|
597 |
- type: cosine_mrr@10
|
598 |
+
value: 0.5853118712273642
|
599 |
name: Cosine Mrr@10
|
600 |
- type: cosine_map@100
|
601 |
+
value: 0.555963840687379
|
602 |
name: Cosine Map@100
|
603 |
---
|
604 |
|
|
|
709 |
|
710 |
| Metric | mteb/AILA_casedocs | mteb/AILA_statutes | mteb/legalbench_consumer_contracts_qa | mteb/legalbench_corporate_lobbying | mteb/legal_summarization |
|
711 |
|:--------------------|:-------------------|:-------------------|:--------------------------------------|:-----------------------------------|:-------------------------|
|
712 |
+
| cosine_accuracy@1 | 0.32 | 0.26 | 0.452 | 0.7382 | 0.493 |
|
713 |
+
| cosine_accuracy@3 | 0.36 | 0.42 | 0.6843 | 0.8941 | 0.6479 |
|
714 |
+
| cosine_accuracy@5 | 0.38 | 0.52 | 0.7879 | 0.9294 | 0.7113 |
|
715 |
+
| cosine_accuracy@10 | 0.54 | 0.68 | 0.8662 | 0.9647 | 0.7958 |
|
716 |
+
| cosine_precision@1 | 0.32 | 0.26 | 0.452 | 0.7382 | 0.493 |
|
717 |
+
| cosine_precision@3 | 0.2 | 0.16 | 0.2281 | 0.298 | 0.2371 |
|
718 |
+
| cosine_precision@5 | 0.14 | 0.132 | 0.1576 | 0.1859 | 0.1641 |
|
719 |
+
| cosine_precision@10 | 0.106 | 0.108 | 0.0866 | 0.0965 | 0.0986 |
|
720 |
+
| cosine_recall@1 | 0.1001 | 0.065 | 0.452 | 0.7382 | 0.4376 |
|
721 |
+
| cosine_recall@3 | 0.174 | 0.125 | 0.6843 | 0.8941 | 0.5706 |
|
722 |
+
| cosine_recall@5 | 0.2052 | 0.164 | 0.7879 | 0.9294 | 0.6356 |
|
723 |
+
| cosine_recall@10 | 0.3084 | 0.256 | 0.8662 | 0.9647 | 0.7264 |
|
724 |
+
| **cosine_ndcg@10** | **0.2682** | **0.2269** | **0.6554** | **0.8569** | **0.5979** |
|
725 |
+
| cosine_mrr@10 | 0.3628 | 0.3727 | 0.5882 | 0.8218 | 0.5853 |
|
726 |
+
| cosine_map@100 | 0.2306 | 0.1966 | 0.5945 | 0.823 | 0.556 |
|
727 |
|
728 |
<!--
|
729 |
## Bias, Risks and Limitations
|
|
|
939 |
- `eval_strategy`: steps
|
940 |
- `per_device_train_batch_size`: 64
|
941 |
- `learning_rate`: 1e-06
|
942 |
+
- `num_train_epochs`: 2
|
943 |
- `warmup_ratio`: 0.1
|
944 |
- `fp16`: True
|
945 |
- `batch_sampler`: no_duplicates
|
|
|
964 |
- `adam_beta2`: 0.999
|
965 |
- `adam_epsilon`: 1e-08
|
966 |
- `max_grad_norm`: 1.0
|
967 |
+
- `num_train_epochs`: 2
|
968 |
- `max_steps`: -1
|
969 |
- `lr_scheduler_type`: linear
|
970 |
- `lr_scheduler_kwargs`: {}
|
|
|
1067 |
| Epoch | Step | Training Loss | mteb/AILA_casedocs_cosine_ndcg@10 | mteb/AILA_statutes_cosine_ndcg@10 | mteb/legalbench_consumer_contracts_qa_cosine_ndcg@10 | mteb/legalbench_corporate_lobbying_cosine_ndcg@10 | mteb/legal_summarization_cosine_ndcg@10 |
|
1068 |
|:------:|:----:|:-------------:|:---------------------------------:|:---------------------------------:|:----------------------------------------------------:|:-------------------------------------------------:|:---------------------------------------:|
|
1069 |
| 0 | 0 | - | 0.1972 | 0.2052 | 0.6560 | 0.8641 | 0.5900 |
|
1070 |
+
| 0.1196 | 100 | - | 0.1936 | 0.2103 | 0.6553 | 0.8662 | 0.5969 |
|
1071 |
+
| 0.2392 | 200 | - | 0.2130 | 0.2135 | 0.6610 | 0.8652 | 0.5988 |
|
1072 |
+
| 0.3589 | 300 | - | 0.2148 | 0.2145 | 0.6626 | 0.8651 | 0.6051 |
|
1073 |
+
| 0.4785 | 400 | - | 0.2227 | 0.2089 | 0.6584 | 0.8618 | 0.6050 |
|
1074 |
+
| 0.5981 | 500 | 4.8514 | 0.2253 | 0.2046 | 0.6583 | 0.8558 | 0.6033 |
|
1075 |
+
| 0.7177 | 600 | - | 0.2301 | 0.2104 | 0.6585 | 0.8568 | 0.6003 |
|
1076 |
+
| 0.8373 | 700 | - | 0.2421 | 0.2037 | 0.6588 | 0.8592 | 0.6007 |
|
1077 |
+
| 0.9569 | 800 | - | 0.2560 | 0.2089 | 0.6589 | 0.8597 | 0.6013 |
|
1078 |
+
| 1.0766 | 900 | - | 0.2518 | 0.2122 | 0.6592 | 0.8616 | 0.6014 |
|
1079 |
+
| 1.1962 | 1000 | 3.2784 | 0.2638 | 0.2193 | 0.6598 | 0.8622 | 0.6010 |
|
1080 |
+
| 1.3158 | 1100 | - | 0.2660 | 0.2193 | 0.6601 | 0.8630 | 0.6008 |
|
1081 |
+
| 1.4354 | 1200 | - | 0.2617 | 0.2237 | 0.6594 | 0.8601 | 0.5990 |
|
1082 |
+
| 1.5550 | 1300 | - | 0.2656 | 0.2249 | 0.6571 | 0.8563 | 0.5990 |
|
1083 |
+
| 1.6746 | 1400 | - | 0.2648 | 0.2254 | 0.6568 | 0.8558 | 0.5992 |
|
1084 |
+
| 1.7943 | 1500 | 3.3186 | 0.2683 | 0.2283 | 0.6564 | 0.8557 | 0.5988 |
|
1085 |
+
| 1.9139 | 1600 | - | 0.2682 | 0.2269 | 0.6554 | 0.8569 | 0.5979 |
|
1086 |
|
1087 |
|
1088 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 90864192
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6e9b8047dac0268b40a558cc5a9b1d602366a655283a7049668101ace9062ef
|
3 |
size 90864192
|