Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
- MobileNetV4
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
---
|
11 |
+
# Model card for MobileNetV4_Conv_Medium_TFLite_256
|
12 |
+
|
13 |
+
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
|
14 |
+
|
15 |
+
Converted to TFLite Float32 & Float16 formats by Youssef Boulaouane.
|
16 |
+
|
17 |
+
_**Note from original pytorch model:** This is a customization with blur pooling for downsample convs after the stem._
|
18 |
+
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
- **Pytorch Weights:** https://huggingface.co/timm/mobilenetv4_conv_medium.e500_r256_in1k
|
22 |
+
- **Model Type:** Image classification
|
23 |
+
- **Model Stats:**
|
24 |
+
- Params (M): 9.7
|
25 |
+
- GMACs: 1.1
|
26 |
+
- Activations (M): 7.6
|
27 |
+
- Input Shape (1, 256, 256, 3)
|
28 |
+
- **Dataset:** ImageNet-1k
|
29 |
+
- **Papers:**
|
30 |
+
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
|
31 |
+
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
32 |
+
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision
|
33 |
+
|
34 |
+
## Model Usage
|
35 |
+
### Image Classification in Python
|
36 |
+
```python
|
37 |
+
import numpy as np
|
38 |
+
import tensorflow as tf
|
39 |
+
from PIL import Image
|
40 |
+
|
41 |
+
# Load label file
|
42 |
+
with open('imagenet_classes.txt', 'r') as file:
|
43 |
+
lines = file.readlines()
|
44 |
+
|
45 |
+
index_to_label = {index: line.strip() for index, line in enumerate(lines)}
|
46 |
+
|
47 |
+
# Initialize interpreter and IO details
|
48 |
+
tfl_model = tf.lite.Interpreter(model_path=tf_model_path)
|
49 |
+
tfl_model.allocate_tensors()
|
50 |
+
input_details = tfl_model.get_input_details()
|
51 |
+
output_details = tfl_model.get_output_details()
|
52 |
+
|
53 |
+
# Load and preprocess the image
|
54 |
+
image = Image.open(image_path).resize((256, 256), Image.BICUBIC)
|
55 |
+
|
56 |
+
image = np.array(image, dtype=np.float32)
|
57 |
+
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
|
58 |
+
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
|
59 |
+
image = (image / 255.0 - mean) / std
|
60 |
+
|
61 |
+
image = np.expand_dims(image, axis=-1)
|
62 |
+
image = np.rollaxis(image, 3)
|
63 |
+
|
64 |
+
# Inference and postprocessing
|
65 |
+
input = input_details[0]
|
66 |
+
tfl_model.set_tensor(input["index"], image)
|
67 |
+
tfl_model.invoke()
|
68 |
+
|
69 |
+
tfl_output = tfl_model.get_tensor(output_details[0]["index"])
|
70 |
+
tfl_output_tensor = tf.convert_to_tensor(tfl_output)
|
71 |
+
tfl_softmax_output = tf.nn.softmax(tfl_output_tensor, axis=1)
|
72 |
+
|
73 |
+
tfl_top5_probs, tfl_top5_indices = tf.math.top_k(tfl_softmax_output, k=5)
|
74 |
+
|
75 |
+
# Get the top5 class labels and probabilities
|
76 |
+
tfl_probs_list = tfl_top5_probs[0].numpy().tolist()
|
77 |
+
tfl_index_list = tfl_top5_indices[0].numpy().tolist()
|
78 |
+
|
79 |
+
for index, prob in zip(tfl_index_list, tfl_probs_list):
|
80 |
+
print(f"{index_to_label[index]}: {round(prob*100, 2)}%")
|
81 |
+
```
|
82 |
+
|
83 |
+
### Deployment on Mobile
|
84 |
+
Refer to guides available here: https://ai.google.dev/edge/lite/inference
|
85 |
+
|
86 |
+
## Citation
|
87 |
+
```bibtex
|
88 |
+
@article{qin2024mobilenetv4,
|
89 |
+
title={MobileNetV4-Universal Models for the Mobile Ecosystem},
|
90 |
+
author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
|
91 |
+
journal={arXiv preprint arXiv:2404.10518},
|
92 |
+
year={2024}
|
93 |
+
}
|
94 |
+
```
|
95 |
+
```bibtex
|
96 |
+
@misc{rw2019timm,
|
97 |
+
author = {Ross Wightman},
|
98 |
+
title = {PyTorch Image Models},
|
99 |
+
year = {2019},
|
100 |
+
publisher = {GitHub},
|
101 |
+
journal = {GitHub repository},
|
102 |
+
doi = {10.5281/zenodo.4414861},
|
103 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
104 |
+
}
|
105 |
+
```
|