File size: 1,035 Bytes
332d34b b45331b 5737596 332d34b 524859e 332d34b 524859e 5737596 332d34b 7762feb 6ba7f97 c4f69dc 6ba7f97 5737596 332d34b 7584ef5 69bb3f8 27a9037 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
base_model: THUDM/glm-4-9b-chat
pipeline_tag: text-generation
license: other
license_name: glm-4
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
language:
- zh
- en
tags:
- glm
- chatglm
- thudm
- chat
- abliterated
library_name: transformers
---
# glm-4-9b-chat-abliterated
## Version 1.1 (Updated 9/1/2024): Layer 17 is used for abliteration instead of 16. Refusal mitigation tends to work better with this layer. PCA and cosine similarity tests seem to agree.
Check out the <a href="https://huggingface.co/byroneverson/glm-4-9b-chat-abliterated/blob/main/abliterate-glm-4-9b-chat.ipynb">jupyter notebook</a> for details of how this model was abliterated from glm-4-9b-chat.
The python package "tiktoken" is required to quantize the model into gguf format. So I had to create <a href="https://huggingface.co/spaces/byroneverson/gguf-my-repo-plus-tiktoken">a fork of GGUF My Repo (+tiktoken)</a>.
![Logo](https://huggingface.co/byroneverson/glm-4-9b-chat-abliterated/resolve/main/logo.png "Logo") |