|
--- |
|
datasets: |
|
- openbmb/RLAIF-V-Dataset |
|
language: |
|
- multilingual |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- minicpm-v |
|
- vision |
|
- ocr |
|
- multi-image |
|
- video |
|
- custom_code |
|
--- |
|
# MiniCPM-V-2_6-RK3588-1.1.2 |
|
|
|
This version of MiniCPM-V-2_6 has been converted to run on the RK3588 NPU using ['w8a8'] quantization. |
|
This model has been optimized with the following LoRA: |
|
|
|
Compatible with RKLLM version: 1.1.2 |
|
|
|
## Useful links: |
|
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) |
|
|
|
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) |
|
|
|
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) |
|
|
|
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) |
|
|
|
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit |
|
|
|
# Original Model Card for base model, MiniCPM-V-2_6, below: |
|
|
|
|
|
<h1>A GPT-4V Level MLLM for Single Image, Multi Image and Video on Your Phone</h1> |
|
|
|
[GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Demo](http://120.92.209.146:8887/)</a> |
|
|
|
|
|
## MiniCPM-V 2.6 |
|
|
|
**MiniCPM-V 2.6** is the latest and most capable model in the MiniCPM-V series. The model is built on SigLip-400M and Qwen2-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-Llama3-V 2.5, and introduces new features for multi-image and video understanding. Notable features of MiniCPM-V 2.6 include: |
|
|
|
- 🔥 **Leading Performance.** |
|
MiniCPM-V 2.6 achieves an average score of 65.2 on the latest version of OpenCompass, a comprehensive evaluation over 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o mini, GPT-4V, Gemini 1.5 Pro, and Claude 3.5 Sonnet** for single image understanding. |
|
|
|
- 🖼️ **Multi Image Understanding and In-context Learning.** MiniCPM-V 2.6 can also perform **conversation and reasoning over multiple images**. It achieves **state-of-the-art performance** on popular multi-image benchmarks such as Mantis-Eval, BLINK, Mathverse mv and Sciverse mv, and also shows promising in-context learning capability. |
|
|
|
- 🎬 **Video Understanding.** MiniCPM-V 2.6 can also **accept video inputs**, performing conversation and providing dense captions for spatial-temporal information. It outperforms **GPT-4V, Claude 3.5 Sonnet and LLaVA-NeXT-Video-34B** on Video-MME with/without subtitles. |
|
|
|
- 💪 **Strong OCR Capability and Others.** |
|
MiniCPM-V 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves **state-of-the-art performance on OCRBench, surpassing proprietary models such as GPT-4o, GPT-4V, and Gemini 1.5 Pro**. |
|
Based on the the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, with significantly lower hallucination rates than GPT-4o and GPT-4V on Object HalBench, and supports **multilingual capabilities** on English, Chinese, German, French, Italian, Korean, etc. |
|
|
|
- 🚀 **Superior Efficiency.** |
|
In addition to its friendly size, MiniCPM-V 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-V 2.6 can efficiently support **real-time video understanding** on end-side devices such as iPad. |
|
|
|
- 💫 **Easy Usage.** |
|
MiniCPM-V 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpmv-main/examples/llava/README-minicpmv2.6.md) and [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.6) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#inference-with-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks, (5) quick local WebUI demo setup with [Gradio](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#chat-with-our-demo-on-gradio) and (6) online web [demo](http://120.92.209.146:8887). |
|
|
|
### Evaluation <!-- omit in toc --> |
|
<div align="center"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/radar_final.png" width=66% /> |
|
</div> |
|
|
|
#### Single image results on OpenCompass, MME, MMVet, OCRBench, MMMU, MathVista, MMB, AI2D, TextVQA, DocVQA, HallusionBench, Object HalBench: |
|
|
|
|
|
<div align="center"> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/QVl0iPtT5aUhlvViyEpgs.png) |
|
|
|
</div> |
|
|
|
<sup>*</sup> We evaluate this benchmark using chain-of-thought prompting. |
|
|
|
<sup>+</sup> Token Density: number of pixels encoded into each visual token at maximum resolution, i.e., # pixels at maximum resolution / # visual tokens. |
|
|
|
Note: For proprietary models, we calculate token density based on the image encoding charging strategy defined in the official API documentation, which provides an upper-bound estimation. |
|
|
|
|
|
|
|
#### Multi-image results on Mantis Eval, BLINK Val, Mathverse mv, Sciverse mv, MIRB: |
|
|
|
<div align="center"> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/o6FGHytRhzeatmhxq0Dbi.png) |
|
|
|
</div> |
|
<sup>*</sup> We evaluate the officially released checkpoint by ourselves. |
|
|
|
|
|
|
|
#### Video results on Video-MME and Video-ChatGPT: |
|
|
|
<div align="center"> |
|
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/_T1mw5yhqNCqVdYRTQOGu.png) --> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/jmrjoRr8SFLkrstjDmpaV.png) |
|
|
|
</div> |
|
|
|
|
|
<details> |
|
<summary>Click to view few-shot results on TextVQA, VizWiz, VQAv2, OK-VQA.</summary> |
|
<div align="center"> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/zXIuiCTTe-POqKGHszdn0.png) |
|
|
|
</div> |
|
* denotes zero image shot and two additional text shots following Flamingo. |
|
|
|
<sup>+</sup> We evaluate the pretraining ckpt without SFT. |
|
</details> |
|
|
|
### Examples <!-- omit in toc --> |
|
|
|
<div style="display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/multi_img-bike.png" alt="Bike" style="margin-bottom: -20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/multi_img-menu.png" alt="Menu" style="margin-bottom: -20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/multi_img-code.png" alt="Code" style="margin-bottom: -20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/ICL-Mem.png" alt="Mem" style="margin-bottom: -20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/multiling-medal.png" alt="medal" style="margin-bottom: 10px;"> |
|
</div> |
|
<details> |
|
<summary>Click to view more cases.</summary> |
|
<div style="display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/ICL-elec.png" alt="elec" style="margin-bottom: -20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/minicpmv2_6/multiling-olympic.png" alt="Menu" style="margin-bottom: 10px;"> |
|
</div> |
|
</details> |
|
|
|
We deploy MiniCPM-V 2.6 on end devices. The demo video is the raw screen recording on a iPad Pro without edition. |
|
|
|
<div style="display: flex; justify-content: center;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/gif_cases/ai.gif" width="48%" style="margin: 0 10px;"/> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/gif_cases/beer.gif" width="48%" style="margin: 0 10px;"/> |
|
</div> |
|
<div style="display: flex; justify-content: center; margin-top: 20px;"> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/gif_cases/ticket.gif" width="48%" style="margin: 0 10px;"/> |
|
<img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/gif_cases/wfh.gif" width="48%" style="margin: 0 10px;"/> |
|
</div> |
|
|
|
<div style="text-align: center;"> |
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/mXAEFQFqNd4nnvPk7r5eX.mp4"></video> |
|
<!-- <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/fEWzfHUdKnpkM7sdmnBQa.mp4"></video> --> |
|
|
|
</div> |
|
|
|
|
|
|
|
## Demo |
|
Click here to try the Demo of [MiniCPM-V 2.6](http://120.92.209.146:8887/). |
|
|
|
|
|
## Usage |
|
Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10: |
|
``` |
|
Pillow==10.1.0 |
|
torch==2.1.2 |
|
torchvision==0.16.2 |
|
transformers==4.40.0 |
|
sentencepiece==0.1.99 |
|
decord |
|
``` |
|
|
|
```python |
|
# test.py |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True, |
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager |
|
model = model.eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True) |
|
|
|
image = Image.open('xx.jpg').convert('RGB') |
|
question = 'What is in the image?' |
|
msgs = [{'role': 'user', 'content': [image, question]}] |
|
|
|
res = model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=tokenizer |
|
) |
|
print(res) |
|
|
|
## if you want to use streaming, please make sure sampling=True and stream=True |
|
## the model.chat will return a generator |
|
res = model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=tokenizer, |
|
sampling=True, |
|
stream=True |
|
) |
|
|
|
generated_text = "" |
|
for new_text in res: |
|
generated_text += new_text |
|
print(new_text, flush=True, end='') |
|
``` |
|
|
|
### Chat with multiple images |
|
<details> |
|
<summary> Click to show Python code running MiniCPM-V 2.6 with multiple images input. </summary> |
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True, |
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager |
|
model = model.eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True) |
|
|
|
image1 = Image.open('image1.jpg').convert('RGB') |
|
image2 = Image.open('image2.jpg').convert('RGB') |
|
question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.' |
|
|
|
msgs = [{'role': 'user', 'content': [image1, image2, question]}] |
|
|
|
answer = model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=tokenizer |
|
) |
|
print(answer) |
|
``` |
|
</details> |
|
|
|
### In-context few-shot learning |
|
<details> |
|
<summary> Click to view Python code running MiniCPM-V 2.6 with few-shot input. </summary> |
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True, |
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager |
|
model = model.eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True) |
|
|
|
question = "production date" |
|
image1 = Image.open('example1.jpg').convert('RGB') |
|
answer1 = "2023.08.04" |
|
image2 = Image.open('example2.jpg').convert('RGB') |
|
answer2 = "2007.04.24" |
|
image_test = Image.open('test.jpg').convert('RGB') |
|
|
|
msgs = [ |
|
{'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]}, |
|
{'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]}, |
|
{'role': 'user', 'content': [image_test, question]} |
|
] |
|
|
|
answer = model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=tokenizer |
|
) |
|
print(answer) |
|
``` |
|
</details> |
|
|
|
### Chat with video |
|
<details> |
|
<summary> Click to view Python code running MiniCPM-V 2.6 with video input. </summary> |
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModel, AutoTokenizer |
|
from decord import VideoReader, cpu # pip install decord |
|
|
|
model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True, |
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager |
|
model = model.eval().cuda() |
|
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True) |
|
|
|
MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number |
|
|
|
def encode_video(video_path): |
|
def uniform_sample(l, n): |
|
gap = len(l) / n |
|
idxs = [int(i * gap + gap / 2) for i in range(n)] |
|
return [l[i] for i in idxs] |
|
|
|
vr = VideoReader(video_path, ctx=cpu(0)) |
|
sample_fps = round(vr.get_avg_fps() / 1) # FPS |
|
frame_idx = [i for i in range(0, len(vr), sample_fps)] |
|
if len(frame_idx) > MAX_NUM_FRAMES: |
|
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) |
|
frames = vr.get_batch(frame_idx).asnumpy() |
|
frames = [Image.fromarray(v.astype('uint8')) for v in frames] |
|
print('num frames:', len(frames)) |
|
return frames |
|
|
|
video_path ="video_test.mp4" |
|
frames = encode_video(video_path) |
|
question = "Describe the video" |
|
msgs = [ |
|
{'role': 'user', 'content': frames + [question]}, |
|
] |
|
|
|
# Set decode params for video |
|
params={} |
|
params["use_image_id"] = False |
|
params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution > 448*448 |
|
|
|
answer = model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=tokenizer, |
|
**params |
|
) |
|
print(answer) |
|
``` |
|
</details> |
|
|
|
|
|
Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage. |
|
|
|
|
|
## Inference with llama.cpp<a id="llamacpp"></a> |
|
MiniCPM-V 2.6 can run with llama.cpp. See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv) for more detail. |
|
|
|
|
|
## Int4 quantized version |
|
Download the int4 quantized version for lower GPU memory (7GB) usage: [MiniCPM-V-2_6-int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4). |
|
|
|
|
|
## License |
|
#### Model License |
|
* The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. |
|
* The usage of MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md). |
|
* The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-V 2.6 weights are also available for free commercial use. |
|
|
|
|
|
#### Statement |
|
* As an LMM, MiniCPM-V 2.6 generates contents by learning a large mount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-V 2.6 does not represent the views and positions of the model developers |
|
* We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model. |
|
|
|
## Key Techniques and Other Multimodal Projects |
|
|
|
👏 Welcome to explore key techniques of MiniCPM-V 2.6 and other multimodal projects of our team: |
|
|
|
[VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V) |
|
|
|
## Citation |
|
|
|
If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️! |
|
|
|
```bib |
|
@article{yao2024minicpm, |
|
title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone}, |
|
author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others}, |
|
journal={arXiv preprint arXiv:2408.01800}, |
|
year={2024} |
|
} |
|
``` |