c01zaut commited on
Commit
064cc36
1 Parent(s): 51b8cbd

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.0.rkllm filter=lfs diff=lfs merge=lfs -text
38
+ gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.5.rkllm filter=lfs diff=lfs merge=lfs -text
39
+ gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-1.0.rkllm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,754 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/gemma-2-2b
3
+ library_name: transformers
4
+ license: gemma
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - conversational
8
+ extra_gated_heading: Access Gemma on Hugging Face
9
+ extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
10
+ agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
11
+ Face and click below. Requests are processed immediately.
12
+ extra_gated_button_content: Acknowledge license
13
+ ---
14
+ # gemma-2-2b-it-RK3588-1.1.1
15
+
16
+ !!! THIS MODEL HAS BEEN MODIFIED FROM THE ORIGINAL !!!
17
+
18
+ This version of gemma-2-2b-it has been converted to run on the RK3588 NPU using ['w8a8'] quantization.
19
+ Only w8a8 quantization appears to work with Gemma 2 models. Other types throw error:
20
+
21
+ E RKNN: [00:14:18.994] failed to allocate handle, ret: -1, errno: 14, errstr: Bad address
22
+ E RKNN: [00:14:18.994] failed to malloc npu memory, size: 232128512, flags: 0x2
23
+ E RKNN: [00:14:18.994] load model file error!
24
+ rknn_init fail! ret=-1
25
+
26
+ This model has been optimized with the following LoRA:
27
+
28
+ Compatible with RKLLM version: 1.1.1
29
+
30
+ ## Useful links:
31
+ [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
32
+
33
+ [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
34
+
35
+ [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
36
+
37
+ Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
38
+
39
+ Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
40
+
41
+ # Original Model Card for base model, gemma-2-2b-it, below:
42
+
43
+
44
+
45
+ # Gemma 2 model card
46
+
47
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
48
+
49
+ **Resources and Technical Documentation**:
50
+
51
+ * [Responsible Generative AI Toolkit][rai-toolkit]
52
+ * [Gemma on Kaggle][kaggle-gemma]
53
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
54
+
55
+ **Terms of Use**: [Terms][terms]
56
+
57
+ **Authors**: Google
58
+
59
+ ## Model Information
60
+
61
+ Summary description and brief definition of inputs and outputs.
62
+
63
+ ### Description
64
+
65
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
66
+ built from the same research and technology used to create the Gemini models.
67
+ They are text-to-text, decoder-only large language models, available in English,
68
+ with open weights for both pre-trained variants and instruction-tuned variants.
69
+ Gemma models are well-suited for a variety of text generation tasks, including
70
+ question answering, summarization, and reasoning. Their relatively small size
71
+ makes it possible to deploy them in environments with limited resources such as
72
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
73
+ state of the art AI models and helping foster innovation for everyone.
74
+
75
+ ### Usage
76
+
77
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
78
+ ```sh
79
+ pip install -U transformers
80
+ ```
81
+
82
+ Then, copy the snippet from the section that is relevant for your usecase.
83
+
84
+ #### Running with the `pipeline` API
85
+
86
+ ```python
87
+ import torch
88
+ from transformers import pipeline
89
+
90
+ pipe = pipeline(
91
+ "text-generation",
92
+ model="google/gemma-2-2b-it",
93
+ model_kwargs={"torch_dtype": torch.bfloat16},
94
+ device="cuda", # replace with "mps" to run on a Mac device
95
+ )
96
+
97
+ messages = [
98
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
99
+ ]
100
+
101
+ outputs = pipe(messages, max_new_tokens=256)
102
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
103
+ print(assistant_response)
104
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
105
+ ```
106
+
107
+ #### Running the model on a single / multi GPU
108
+
109
+ ```python
110
+ # pip install accelerate
111
+ from transformers import AutoTokenizer, AutoModelForCausalLM
112
+ import torch
113
+
114
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
115
+ model = AutoModelForCausalLM.from_pretrained(
116
+ "google/gemma-2-2b-it",
117
+ device_map="auto",
118
+ torch_dtype=torch.bfloat16,
119
+ )
120
+
121
+ input_text = "Write me a poem about Machine Learning."
122
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
123
+
124
+ outputs = model.generate(**input_ids, max_new_tokens=32)
125
+ print(tokenizer.decode(outputs[0]))
126
+ ```
127
+
128
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
129
+ ```python
130
+ messages = [
131
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
132
+ ]
133
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
134
+
135
+ outputs = model.generate(**input_ids, max_new_tokens=256)
136
+ print(tokenizer.decode(outputs[0]))
137
+ ```
138
+
139
+ <a name="precisions"></a>
140
+ #### Running the model on a GPU using different precisions
141
+
142
+ The native weights of this model were exported in `bfloat16` precision.
143
+
144
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
145
+
146
+ * _Upcasting to `torch.float32`_
147
+
148
+ ```python
149
+ # pip install accelerate
150
+ from transformers import AutoTokenizer, AutoModelForCausalLM
151
+
152
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
153
+ model = AutoModelForCausalLM.from_pretrained(
154
+ "google/gemma-2-2b-it",
155
+ device_map="auto",
156
+ )
157
+
158
+ input_text = "Write me a poem about Machine Learning."
159
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
160
+
161
+ outputs = model.generate(**input_ids, max_new_tokens=32)
162
+ print(tokenizer.decode(outputs[0]))
163
+ ```
164
+
165
+ #### Running the model through a CLI
166
+
167
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
168
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
169
+ for getting started, then launch the CLI through the following command:
170
+
171
+ ```shell
172
+ local-gemma --model 2b --preset speed
173
+ ```
174
+
175
+ #### Quantized Versions through `bitsandbytes`
176
+
177
+ <details>
178
+ <summary>
179
+ Using 8-bit precision (int8)
180
+ </summary>
181
+
182
+ ```python
183
+ # pip install bitsandbytes accelerate
184
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
185
+
186
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
187
+
188
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
189
+ model = AutoModelForCausalLM.from_pretrained(
190
+ "google/gemma-2-2b-it",
191
+ quantization_config=quantization_config,
192
+ )
193
+
194
+ input_text = "Write me a poem about Machine Learning."
195
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
196
+
197
+ outputs = model.generate(**input_ids, max_new_tokens=32)
198
+ print(tokenizer.decode(outputs[0]))
199
+ ```
200
+ </details>
201
+
202
+ <details>
203
+ <summary>
204
+ Using 4-bit precision
205
+ </summary>
206
+
207
+ ```python
208
+ # pip install bitsandbytes accelerate
209
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
210
+
211
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
212
+
213
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
214
+ model = AutoModelForCausalLM.from_pretrained(
215
+ "google/gemma-2-2b-it",
216
+ quantization_config=quantization_config,
217
+ )
218
+
219
+ input_text = "Write me a poem about Machine Learning."
220
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
221
+
222
+ outputs = model.generate(**input_ids, max_new_tokens=32)
223
+ print(tokenizer.decode(outputs[0]))
224
+ ```
225
+ </details>
226
+
227
+ #### Advanced Usage
228
+
229
+ <details>
230
+ <summary>
231
+ Torch compile
232
+ </summary>
233
+
234
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
235
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
236
+
237
+ Note that two warm-up steps are required before the full inference speed is realised:
238
+
239
+ ```python
240
+ import os
241
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
242
+
243
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
244
+ from transformers.cache_utils import HybridCache
245
+ import torch
246
+
247
+ torch.set_float32_matmul_precision("high")
248
+
249
+ # load the model + tokenizer
250
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
251
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
252
+ model.to("cuda")
253
+
254
+ # apply the torch compile transformation
255
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
256
+
257
+ # pre-process inputs
258
+ input_text = "The theory of special relativity states "
259
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
260
+ prompt_length = model_inputs.input_ids.shape[1]
261
+
262
+ # set-up k/v cache
263
+ past_key_values = HybridCache(
264
+ config=model.config,
265
+ max_batch_size=1,
266
+ max_cache_len=model.config.max_position_embeddings,
267
+ device=model.device,
268
+ dtype=model.dtype
269
+ )
270
+
271
+ # enable passing kv cache to generate
272
+ model._supports_cache_class = True
273
+ model.generation_config.cache_implementation = None
274
+
275
+ # two warm-up steps
276
+ for idx in range(2):
277
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
278
+ past_key_values.reset()
279
+
280
+ # fast run
281
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
282
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
283
+ ```
284
+
285
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
286
+
287
+ </details>
288
+
289
+ ### Chat Template
290
+
291
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
292
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
293
+
294
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
295
+
296
+ ```py
297
+ from transformers import AutoTokenizer, AutoModelForCausalLM
298
+ import transformers
299
+ import torch
300
+
301
+ model_id = "google/gemma-2-2b-it"
302
+ dtype = torch.bfloat16
303
+
304
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
305
+ model = AutoModelForCausalLM.from_pretrained(
306
+ model_id,
307
+ device_map="cuda",
308
+ torch_dtype=dtype,)
309
+
310
+ chat = [
311
+ { "role": "user", "content": "Write a hello world program" },
312
+ ]
313
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
314
+ ```
315
+
316
+ At this point, the prompt contains the following text:
317
+
318
+ ```
319
+ <bos><start_of_turn>user
320
+ Write a hello world program<end_of_turn>
321
+ <start_of_turn>model
322
+ ```
323
+
324
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
325
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
326
+ the `<end_of_turn>` token.
327
+
328
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
329
+ chat template.
330
+
331
+ After the prompt is ready, generation can be performed like this:
332
+
333
+ ```py
334
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
335
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
336
+ print(tokenizer.decode(outputs[0]))
337
+ ```
338
+
339
+ ### Inputs and outputs
340
+
341
+ * **Input:** Text string, such as a question, a prompt, or a document to be
342
+ summarized.
343
+ * **Output:** Generated English-language text in response to the input, such
344
+ as an answer to a question, or a summary of a document.
345
+
346
+ ### Citation
347
+
348
+ ```none
349
+ @article{gemma_2024,
350
+ title={Gemma},
351
+ url={https://www.kaggle.com/m/3301},
352
+ DOI={10.34740/KAGGLE/M/3301},
353
+ publisher={Kaggle},
354
+ author={Gemma Team},
355
+ year={2024}
356
+ }
357
+ ```
358
+
359
+ ## Model Data
360
+
361
+ Data used for model training and how the data was processed.
362
+
363
+ ### Training Dataset
364
+
365
+ These models were trained on a dataset of text data that includes a wide variety
366
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
367
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
368
+ Here are the key components:
369
+
370
+ * Web Documents: A diverse collection of web text ensures the model is exposed
371
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
372
+ English-language content.
373
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
374
+ programming languages, which improves its ability to generate code or
375
+ understand code-related questions.
376
+ * Mathematics: Training on mathematical text helps the model learn logical
377
+ reasoning, symbolic representation, and to address mathematical queries.
378
+
379
+ The combination of these diverse data sources is crucial for training a powerful
380
+ language model that can handle a wide variety of different tasks and text
381
+ formats.
382
+
383
+ ### Data Preprocessing
384
+
385
+ Here are the key data cleaning and filtering methods applied to the training
386
+ data:
387
+
388
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
389
+ applied at multiple stages in the data preparation process to ensure the
390
+ exclusion of harmful and illegal content.
391
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
392
+ reliable, automated techniques were used to filter out certain personal
393
+ information and other sensitive data from training sets.
394
+ * Additional methods: Filtering based on content quality and safety in line with
395
+ [our policies][safety-policies].
396
+
397
+ ## Implementation Information
398
+
399
+ Details about the model internals.
400
+
401
+ ### Hardware
402
+
403
+ Gemma was trained using the latest generation of
404
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
405
+
406
+ Training large language models requires significant computational power. TPUs,
407
+ designed specifically for matrix operations common in machine learning, offer
408
+ several advantages in this domain:
409
+
410
+ * Performance: TPUs are specifically designed to handle the massive computations
411
+ involved in training LLMs. They can speed up training considerably compared to
412
+ CPUs.
413
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
414
+ for the handling of large models and batch sizes during training. This can
415
+ lead to better model quality.
416
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
417
+ handling the growing complexity of large foundation models. You can distribute
418
+ training across multiple TPU devices for faster and more efficient processing.
419
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
420
+ solution for training large models compared to CPU-based infrastructure,
421
+ especially when considering the time and resources saved due to faster
422
+ training.
423
+ * These advantages are aligned with
424
+ [Google's commitments to operate sustainably][sustainability].
425
+
426
+ ### Software
427
+
428
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
429
+
430
+ JAX allows researchers to take advantage of the latest generation of hardware,
431
+ including TPUs, for faster and more efficient training of large models.
432
+
433
+ ML Pathways is Google's latest effort to build artificially intelligent systems
434
+ capable of generalizing across multiple tasks. This is specially suitable for
435
+ [foundation models][foundation-models], including large language models like
436
+ these ones.
437
+
438
+ Together, JAX and ML Pathways are used as described in the
439
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
440
+ controller' programming model of Jax and Pathways allows a single Python
441
+ process to orchestrate the entire training run, dramatically simplifying the
442
+ development workflow."
443
+
444
+ ## Evaluation
445
+
446
+ Model evaluation metrics and results.
447
+
448
+ ### Benchmark Results
449
+
450
+ These models were evaluated against a large collection of different datasets and
451
+ metrics to cover different aspects of text generation:
452
+
453
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
454
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
455
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
456
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
457
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
458
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
459
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
460
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
461
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
462
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
463
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
464
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
465
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
466
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
467
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
468
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
469
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
470
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
471
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
472
+
473
+ ## Ethics and Safety
474
+
475
+ Ethics and safety evaluation approach and results.
476
+
477
+ ### Evaluation Approach
478
+
479
+ Our evaluation methods include structured evaluations and internal red-teaming
480
+ testing of relevant content policies. Red-teaming was conducted by a number of
481
+ different teams, each with different goals and human evaluation metrics. These
482
+ models were evaluated against a number of different categories relevant to
483
+ ethics and safety, including:
484
+
485
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
486
+ policies including child sexual abuse and exploitation, harassment, violence
487
+ and gore, and hate speech.
488
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
489
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
490
+ * Memorization: Automated evaluation of memorization of training data, including
491
+ the risk of personally identifiable information exposure.
492
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
493
+ biological, radiological, and nuclear (CBRN) risks.
494
+
495
+ ### Evaluation Results
496
+
497
+ The results of ethics and safety evaluations are within acceptable thresholds
498
+ for meeting [internal policies][safety-policies] for categories such as child
499
+ safety, content safety, representational harms, memorization, large-scale harms.
500
+ On top of robust internal evaluations, the results of well-known safety
501
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
502
+ are shown here.
503
+
504
+ #### Gemma 2.0
505
+
506
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
507
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
508
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
509
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
510
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
511
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
512
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
513
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
514
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
515
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
516
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
517
+
518
+ ## Dangerous Capability Evaluations
519
+
520
+ ### Evaluation Approach
521
+
522
+ We evaluated a range of dangerous capabilities:
523
+
524
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
525
+ cybersecurity contexts, we utilized both publicly available
526
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
527
+ well as internally developed CTF challenges. These evaluations measure the
528
+ model's ability to exploit vulnerabilities and gain unauthorized access in
529
+ simulated environments.
530
+ - **Self-proliferation:** We evaluated the model's capacity for
531
+ self-proliferation by designing tasks that involve resource acquisition, code
532
+ execution, and interaction with remote systems. These evaluations assess
533
+ the model's ability to independently replicate and spread.
534
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
535
+ deception, we conducted human persuasion studies. These studies involved
536
+ scenarios that measure the model's ability to build rapport, influence
537
+ beliefs, and elicit specific actions from human participants.
538
+
539
+ ### Evaluation Results
540
+
541
+ All evaluations are described in detail in
542
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
543
+ and in brief in the
544
+ [Gemma 2 technical report][tech-report].
545
+
546
+ <table>
547
+ <thead>
548
+ <tr>
549
+ <th>Evaluation</th>
550
+ <th>Capability</th>
551
+ <th>Gemma 2 IT 27B</th>
552
+ </tr>
553
+ </thead>
554
+ <tbody>
555
+ <tr>
556
+ <td>InterCode-CTF</td>
557
+ <td>Offensive cybersecurity</td>
558
+ <td>34/76 challenges</td>
559
+ </tr>
560
+ <tr>
561
+ <td>Internal CTF</td>
562
+ <td>Offensive cybersecurity</td>
563
+ <td>1/13 challenges</td>
564
+ </tr>
565
+ <tr>
566
+ <td>Hack the Box</td>
567
+ <td>Offensive cybersecurity</td>
568
+ <td>0/13 challenges</td>
569
+ </tr>
570
+ <tr>
571
+ <td>Self-proliferation early warning</td>
572
+ <td>Self-proliferation</td>
573
+ <td>1/10 challenges</td>
574
+ </tr>
575
+ <tr>
576
+ <td>Charm offensive</td>
577
+ <td>Persuasion</td>
578
+ <td>Percent of participants agreeing:
579
+ 81% interesting,
580
+ 75% would speak again,
581
+ 80% made personal connection</td>
582
+ </tr>
583
+ <tr>
584
+ <td>Click Links</td>
585
+ <td>Persuasion</td>
586
+ <td>34% of participants</td>
587
+ </tr>
588
+ <tr>
589
+ <td>Find Info</td>
590
+ <td>Persuasion</td>
591
+ <td>9% of participants</td>
592
+ </tr>
593
+ <tr>
594
+ <td>Run Code</td>
595
+ <td>Persuasion</td>
596
+ <td>11% of participants</td>
597
+ </tr>
598
+ <tr>
599
+ <td>Money talks</td>
600
+ <td>Persuasion</td>
601
+ <td>£3.72 mean donation</td>
602
+ </tr>
603
+ <tr>
604
+ <td>Web of Lies</td>
605
+ <td>Persuasion</td>
606
+ <td>18% mean shift towards correct belief, 1% mean shift towards
607
+ incorrect belief</td>
608
+ </tr>
609
+ </tbody>
610
+ </table>
611
+
612
+ ## Usage and Limitations
613
+
614
+ These models have certain limitations that users should be aware of.
615
+
616
+ ### Intended Usage
617
+
618
+ Open Large Language Models (LLMs) have a wide range of applications across
619
+ various industries and domains. The following list of potential uses is not
620
+ comprehensive. The purpose of this list is to provide contextual information
621
+ about the possible use-cases that the model creators considered as part of model
622
+ training and development.
623
+
624
+ * Content Creation and Communication
625
+ * Text Generation: These models can be used to generate creative text formats
626
+ such as poems, scripts, code, marketing copy, and email drafts.
627
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
628
+ service, virtual assistants, or interactive applications.
629
+ * Text Summarization: Generate concise summaries of a text corpus, research
630
+ papers, or reports.
631
+ * Research and Education
632
+ * Natural Language Processing (NLP) Research: These models can serve as a
633
+ foundation for researchers to experiment with NLP techniques, develop
634
+ algorithms, and contribute to the advancement of the field.
635
+ * Language Learning Tools: Support interactive language learning experiences,
636
+ aiding in grammar correction or providing writing practice.
637
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
638
+ by generating summaries or answering questions about specific topics.
639
+
640
+ ### Limitations
641
+
642
+ * Training Data
643
+ * The quality and diversity of the training data significantly influence the
644
+ model's capabilities. Biases or gaps in the training data can lead to
645
+ limitations in the model's responses.
646
+ * The scope of the training dataset determines the subject areas the model can
647
+ handle effectively.
648
+ * Context and Task Complexity
649
+ * LLMs are better at tasks that can be framed with clear prompts and
650
+ instructions. Open-ended or highly complex tasks might be challenging.
651
+ * A model's performance can be influenced by the amount of context provided
652
+ (longer context generally leads to better outputs, up to a certain point).
653
+ * Language Ambiguity and Nuance
654
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
655
+ nuances, sarcasm, or figurative language.
656
+ * Factual Accuracy
657
+ * LLMs generate responses based on information they learned from their
658
+ training datasets, but they are not knowledge bases. They may generate
659
+ incorrect or outdated factual statements.
660
+ * Common Sense
661
+ * LLMs rely on statistical patterns in language. They might lack the ability
662
+ to apply common sense reasoning in certain situations.
663
+
664
+ ### Ethical Considerations and Risks
665
+
666
+ The development of large language models (LLMs) raises several ethical concerns.
667
+ In creating an open model, we have carefully considered the following:
668
+
669
+ * Bias and Fairness
670
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
671
+ biases embedded in the training material. These models underwent careful
672
+ scrutiny, input data pre-processing described and posterior evaluations
673
+ reported in this card.
674
+ * Misinformation and Misuse
675
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
676
+ * Guidelines are provided for responsible use with the model, see the
677
+ [Responsible Generative AI Toolkit][rai-toolkit].
678
+ * Transparency and Accountability:
679
+ * This model card summarizes details on the models' architecture,
680
+ capabilities, limitations, and evaluation processes.
681
+ * A responsibly developed open model offers the opportunity to share
682
+ innovation by making LLM technology accessible to developers and researchers
683
+ across the AI ecosystem.
684
+
685
+ Risks identified and mitigations:
686
+
687
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
688
+ (using evaluation metrics, human review) and the exploration of de-biasing
689
+ techniques during model training, fine-tuning, and other use cases.
690
+ * Generation of harmful content: Mechanisms and guidelines for content safety
691
+ are essential. Developers are encouraged to exercise caution and implement
692
+ appropriate content safety safeguards based on their specific product policies
693
+ and application use cases.
694
+ * Misuse for malicious purposes: Technical limitations and developer and
695
+ end-user education can help mitigate against malicious applications of LLMs.
696
+ Educational resources and reporting mechanisms for users to flag misuse are
697
+ provided. Prohibited uses of Gemma models are outlined in the
698
+ [Gemma Prohibited Use Policy][prohibited-use].
699
+ * Privacy violations: Models were trained on data filtered for removal of PII
700
+ (Personally Identifiable Information). Developers are encouraged to adhere to
701
+ privacy regulations with privacy-preserving techniques.
702
+
703
+ ### Benefits
704
+
705
+ At the time of release, this family of models provides high-performance open
706
+ large language model implementations designed from the ground up for Responsible
707
+ AI development compared to similarly sized models.
708
+
709
+ Using the benchmark evaluation metrics described in this document, these models
710
+ have shown to provide superior performance to other, comparably-sized open model
711
+ alternatives.
712
+
713
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
714
+ [rai-toolkit]: https://ai.google.dev/responsible
715
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
716
+ [terms]: https://ai.google.dev/gemma/terms
717
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
718
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
719
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
720
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
721
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
722
+ [sustainability]: https://sustainability.google/operating-sustainably/
723
+ [jax]: https://github.com/google/jax
724
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
725
+ [sustainability]: https://sustainability.google/operating-sustainably/
726
+ [foundation-models]: https://ai.google/discover/foundation-models/
727
+ [gemini-2-paper]: https://goo.gle/gemma2report
728
+ [mmlu]: https://arxiv.org/abs/2009.03300
729
+ [hellaswag]: https://arxiv.org/abs/1905.07830
730
+ [piqa]: https://arxiv.org/abs/1911.11641
731
+ [socialiqa]: https://arxiv.org/abs/1904.09728
732
+ [boolq]: https://arxiv.org/abs/1905.10044
733
+ [winogrande]: https://arxiv.org/abs/1907.10641
734
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
735
+ [openbookqa]: https://arxiv.org/abs/1809.02789
736
+ [arc]: https://arxiv.org/abs/1911.01547
737
+ [triviaqa]: https://arxiv.org/abs/1705.03551
738
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
739
+ [humaneval]: https://arxiv.org/abs/2107.03374
740
+ [mbpp]: https://arxiv.org/abs/2108.07732
741
+ [gsm8k]: https://arxiv.org/abs/2110.14168
742
+ [realtox]: https://arxiv.org/abs/2009.11462
743
+ [bold]: https://arxiv.org/abs/2101.11718
744
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
745
+ [bbq]: https://arxiv.org/abs/2110.08193v2
746
+ [winogender]: https://arxiv.org/abs/1804.09301
747
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
748
+ [winobias]: https://arxiv.org/abs/1804.06876
749
+ [math]: https://arxiv.org/abs/2103.03874
750
+ [agieval]: https://arxiv.org/abs/2304.06364
751
+ [drop]: https://arxiv.org/abs/1903.00161
752
+ [big-bench]: https://arxiv.org/abs/2206.04615
753
+ [toxigen]: https://arxiv.org/abs/2203.09509
754
+ [eval-danger]: https://arxiv.org/abs/2403.13793
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": 50.0,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": [
11
+ 1,
12
+ 107
13
+ ],
14
+ "final_logit_softcapping": 30.0,
15
+ "head_dim": 256,
16
+ "hidden_act": "gelu_pytorch_tanh",
17
+ "hidden_activation": "gelu_pytorch_tanh",
18
+ "hidden_size": 2304,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 9216,
21
+ "max_position_embeddings": 8192,
22
+ "model_type": "gemma2",
23
+ "num_attention_heads": 8,
24
+ "num_hidden_layers": 26,
25
+ "num_key_value_heads": 4,
26
+ "pad_token_id": 0,
27
+ "query_pre_attn_scalar": 256,
28
+ "rms_norm_eps": 1e-06,
29
+ "rope_theta": 10000.0,
30
+ "sliding_window": 4096,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.42.4",
33
+ "use_cache": true,
34
+ "vocab_size": 256000
35
+ }
gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.0.rkllm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef9cda0ef9b15cad8393e3f8f5d9f66a52f10964f631358e558bd621f550cc1
3
+ size 3820727524
gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.5.rkllm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef9cda0ef9b15cad8393e3f8f5d9f66a52f10964f631358e558bd621f550cc1
3
+ size 3820727524
gemma-2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-1.0.rkllm ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef9cda0ef9b15cad8393e3f8f5d9f66a52f10964f631358e558bd621f550cc1
3
+ size 3820727524
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": [
6
+ 1,
7
+ 107
8
+ ],
9
+ "pad_token_id": 0,
10
+ "transformers_version": "4.42.4"
11
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5228683776
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
229
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
232
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
234
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
241
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.norm.weight": "model-00002-of-00002.safetensors"
294
+ }
295
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
3
+ size 17525357
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json ADDED
@@ -0,0 +1,2013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "255968": {
1742
+ "content": "[toxicity=0]",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": false
1748
+ },
1749
+ "255969": {
1750
+ "content": "\t\t",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": false
1756
+ },
1757
+ "255970": {
1758
+ "content": "\t\t\t",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": false
1764
+ },
1765
+ "255971": {
1766
+ "content": "\t\t\t\t",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": false
1772
+ },
1773
+ "255972": {
1774
+ "content": "\t\t\t\t\t",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": false
1780
+ },
1781
+ "255973": {
1782
+ "content": "\t\t\t\t\t\t",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": false
1788
+ },
1789
+ "255974": {
1790
+ "content": "\t\t\t\t\t\t\t",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": false
1796
+ },
1797
+ "255975": {
1798
+ "content": "\t\t\t\t\t\t\t\t",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": false
1804
+ },
1805
+ "255976": {
1806
+ "content": "\t\t\t\t\t\t\t\t\t",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": false
1812
+ },
1813
+ "255977": {
1814
+ "content": "\t\t\t\t\t\t\t\t\t\t",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": false
1820
+ },
1821
+ "255978": {
1822
+ "content": "\t\t\t\t\t\t\t\t\t\t\t",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": false
1828
+ },
1829
+ "255979": {
1830
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": false
1836
+ },
1837
+ "255980": {
1838
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": false
1844
+ },
1845
+ "255981": {
1846
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": false
1852
+ },
1853
+ "255982": {
1854
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": false
1860
+ },
1861
+ "255983": {
1862
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": false
1868
+ },
1869
+ "255984": {
1870
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": false
1876
+ },
1877
+ "255985": {
1878
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": false
1884
+ },
1885
+ "255986": {
1886
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": false
1892
+ },
1893
+ "255987": {
1894
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": false
1900
+ },
1901
+ "255988": {
1902
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": false
1908
+ },
1909
+ "255989": {
1910
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": false
1916
+ },
1917
+ "255990": {
1918
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": false
1924
+ },
1925
+ "255991": {
1926
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": false
1932
+ },
1933
+ "255992": {
1934
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": false
1940
+ },
1941
+ "255993": {
1942
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": false
1948
+ },
1949
+ "255994": {
1950
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": false
1956
+ },
1957
+ "255995": {
1958
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": false
1964
+ },
1965
+ "255996": {
1966
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": false
1972
+ },
1973
+ "255997": {
1974
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": false
1980
+ },
1981
+ "255998": {
1982
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": false
1988
+ },
1989
+ "255999": {
1990
+ "content": "<unused99>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": false
1996
+ }
1997
+ },
1998
+ "additional_special_tokens": [
1999
+ "<start_of_turn>",
2000
+ "<end_of_turn>"
2001
+ ],
2002
+ "bos_token": "<bos>",
2003
+ "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
2004
+ "clean_up_tokenization_spaces": false,
2005
+ "eos_token": "<eos>",
2006
+ "model_max_length": 1000000000000000019884624838656,
2007
+ "pad_token": "<pad>",
2008
+ "sp_model_kwargs": {},
2009
+ "spaces_between_special_tokens": false,
2010
+ "tokenizer_class": "GemmaTokenizer",
2011
+ "unk_token": "<unk>",
2012
+ "use_default_system_prompt": false
2013
+ }