--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-large-patch16-384 tags: - image-regression - human-movement - vision - generated_from_trainer model-index: - name: limbxy_pose results: [] --- # limbxy_pose This model is a fine-tuned version of [microsoft/beit-large-patch16-384](https://huggingface.co/microsoft/beit-large-patch16-384) on the c14kevincardenas/beta_caller_284_limbxy_pose dataset. It achieves the following results on the evaluation set: - Loss: 0.1399 - Rmse: 0.3740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 2014 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2029 | 1.0 | 89 | 0.2039 | 0.4516 | | 0.1535 | 2.0 | 178 | 0.1545 | 0.3931 | | 0.1847 | 3.0 | 267 | 0.1640 | 0.4050 | | 0.1582 | 4.0 | 356 | 0.1427 | 0.3777 | | 0.1471 | 5.0 | 445 | 0.1427 | 0.3778 | | 0.1553 | 6.0 | 534 | 0.1469 | 0.3833 | | 0.1613 | 7.0 | 623 | 0.1430 | 0.3782 | | 0.1471 | 8.0 | 712 | 0.1427 | 0.3778 | | 0.1587 | 9.0 | 801 | 0.1417 | 0.3764 | | 0.1504 | 10.0 | 890 | 0.1427 | 0.3777 | | 0.1431 | 11.0 | 979 | 0.1429 | 0.3780 | | 0.1455 | 12.0 | 1068 | 0.1442 | 0.3797 | | 0.1515 | 13.0 | 1157 | 0.1431 | 0.3783 | | 0.1407 | 14.0 | 1246 | 0.1443 | 0.3799 | | 0.1436 | 15.0 | 1335 | 0.1419 | 0.3768 | | 0.1425 | 16.0 | 1424 | 0.1399 | 0.3740 | | 0.1411 | 17.0 | 1513 | 0.1401 | 0.3743 | | 0.1401 | 18.0 | 1602 | 0.1408 | 0.3752 | | 0.1426 | 19.0 | 1691 | 0.1406 | 0.3750 | | 0.1388 | 20.0 | 1780 | 0.1400 | 0.3742 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1