Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/cahya/gpt2-small-indonesian-522M/README.md
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "id"
|
3 |
+
license: "mit"
|
4 |
+
datasets:
|
5 |
+
- Indonesian Wikipedia
|
6 |
+
widget:
|
7 |
+
- text: "Pulau Dewata sering dikunjungi"
|
8 |
+
---
|
9 |
+
|
10 |
+
# Indonesian GPT2 small model
|
11 |
+
|
12 |
+
## Model description
|
13 |
+
It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This
|
14 |
+
model is uncased: it does not make a difference between indonesia and Indonesia.
|
15 |
+
|
16 |
+
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about
|
17 |
+
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers)
|
18 |
+
|
19 |
+
## Intended uses & limitations
|
20 |
+
|
21 |
+
### How to use
|
22 |
+
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
|
23 |
+
we set a seed for reproducibility:
|
24 |
+
```python
|
25 |
+
>>> from transformers import pipeline, set_seed
|
26 |
+
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M')
|
27 |
+
>>> set_seed(42)
|
28 |
+
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10)
|
29 |
+
|
30 |
+
[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'},
|
31 |
+
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'},
|
32 |
+
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'},
|
33 |
+
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'},
|
34 |
+
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}]
|
35 |
+
|
36 |
+
```
|
37 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
38 |
+
```python
|
39 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
40 |
+
|
41 |
+
model_name='cahya/gpt2-small-indonesian-522M'
|
42 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
43 |
+
model = GPT2Model.from_pretrained(model_name)
|
44 |
+
text = "Silakan diganti dengan text apa saja."
|
45 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
46 |
+
output = model(**encoded_input)
|
47 |
+
```
|
48 |
+
and in Tensorflow:
|
49 |
+
```python
|
50 |
+
from transformers import GPT2Tokenizer, TFGPT2Model
|
51 |
+
|
52 |
+
model_name='cahya/gpt2-small-indonesian-522M'
|
53 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
54 |
+
model = TFGPT2Model.from_pretrained(model_name)
|
55 |
+
text = "Silakan diganti dengan text apa saja."
|
56 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
57 |
+
output = model(encoded_input)
|
58 |
+
```
|
59 |
+
|
60 |
+
## Training data
|
61 |
+
|
62 |
+
This model was pre-trained with 522MB of indonesian Wikipedia.
|
63 |
+
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and
|
64 |
+
a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens.
|