File size: 8,141 Bytes
fcbce2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
loading configuration file https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv/resolve/main/config.json from cache at /home/cahya/.cache/huggingface/transformers/47f005d7b541562c0734cfe1b8aaf7f644846084b33a9247f5810d5a16d001a7.1c2175954f7220a41c71683d239699eb295d40ec92ac51faac3b85ad4bef2ad8
/home/cahya/Work/MachineLearning/transformers/src/transformers/configuration_utils.py:353: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.
warnings.warn(
Model config Wav2Vec2Config {
"_name_or_path": "cahya/wav2vec2-base-turkish-artificial-cv",
"activation_dropout": 0.055,
"adapter_kernel_size": 3,
"adapter_stride": 2,
"add_adapter": false,
"apply_spec_augment": true,
"architectures": [
"Wav2Vec2ForCTC"
],
"attention_dropout": 0.094,
"bos_token_id": 1,
"classifier_proj_size": 256,
"codevector_dim": 256,
"contrastive_logits_temperature": 0.1,
"conv_bias": false,
"conv_dim": [
512,
512,
512,
512,
512,
512,
512
],
"conv_kernel": [
10,
3,
3,
3,
3,
2,
2
],
"conv_stride": [
5,
2,
2,
2,
2,
2,
2
],
"ctc_loss_reduction": "mean",
"ctc_zero_infinity": true,
"diversity_loss_weight": 0.1,
"do_stable_layer_norm": false,
"eos_token_id": 2,
"feat_extract_activation": "gelu",
"feat_extract_norm": "group",
"feat_proj_dropout": 0.04,
"feat_quantizer_dropout": 0.0,
"final_dropout": 0.1,
"gradient_checkpointing": true,
"hidden_act": "gelu",
"hidden_dropout": 0.047,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"layerdrop": 0.041,
"mask_feature_length": 10,
"mask_feature_min_masks": 0,
"mask_feature_prob": 0.0,
"mask_time_length": 10,
"mask_time_min_masks": 2,
"mask_time_prob": 0.4,
"model_type": "wav2vec2",
"num_adapter_layers": 3,
"num_attention_heads": 12,
"num_codevector_groups": 2,
"num_codevectors_per_group": 320,
"num_conv_pos_embedding_groups": 16,
"num_conv_pos_embeddings": 128,
"num_feat_extract_layers": 7,
"num_hidden_layers": 12,
"num_negatives": 100,
"output_hidden_size": 768,
"pad_token_id": 39,
"proj_codevector_dim": 256,
"tdnn_dilation": [
1,
2,
3,
1,
1
],
"tdnn_dim": [
512,
512,
512,
512,
1500
],
"tdnn_kernel": [
5,
3,
3,
1,
1
],
"transformers_version": "4.17.0.dev0",
"use_weighted_layer_sum": false,
"vocab_size": 40,
"xvector_output_dim": 512
}
0%| | 0/1 [00:00<?, ?ba/s]
100%|ββββββββββ| 1/1 [00:00<00:00, 9.35ba/s]
100%|ββββββββββ| 1/1 [00:00<00:00, 9.34ba/s]
0%| | 0/1 [00:00<?, ?ba/s]
100%|ββββββββββ| 1/1 [00:00<00:00, 25.43ba/s]
Didn't find file ./output/tokenizer_config.json. We won't load it.
Didn't find file ./output/added_tokens.json. We won't load it.
Didn't find file ./output/special_tokens_map.json. We won't load it.
Didn't find file ./output/tokenizer.json. We won't load it.
loading file ./output/vocab.json
loading file None
loading file None
loading file None
loading file None
file ./output/config.json not found
Adding <s> to the vocabulary
Adding </s> to the vocabulary
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
loading configuration file https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv/resolve/main/config.json from cache at /home/cahya/.cache/huggingface/transformers/47f005d7b541562c0734cfe1b8aaf7f644846084b33a9247f5810d5a16d001a7.1c2175954f7220a41c71683d239699eb295d40ec92ac51faac3b85ad4bef2ad8
Model config Wav2Vec2Config {
"_name_or_path": "cahya/wav2vec2-base-turkish-artificial-cv",
"activation_dropout": 0.055,
"adapter_kernel_size": 3,
"adapter_stride": 2,
"add_adapter": false,
"apply_spec_augment": true,
"architectures": [
"Wav2Vec2ForCTC"
],
"attention_dropout": 0.094,
"bos_token_id": 1,
"classifier_proj_size": 256,
"codevector_dim": 256,
"contrastive_logits_temperature": 0.1,
"conv_bias": false,
"conv_dim": [
512,
512,
512,
512,
512,
512,
512
],
"conv_kernel": [
10,
3,
3,
3,
3,
2,
2
],
"conv_stride": [
5,
2,
2,
2,
2,
2,
2
],
"ctc_loss_reduction": "mean",
"ctc_zero_infinity": true,
"diversity_loss_weight": 0.1,
"do_stable_layer_norm": false,
"eos_token_id": 2,
"feat_extract_activation": "gelu",
"feat_extract_norm": "group",
"feat_proj_dropout": 0.04,
"feat_quantizer_dropout": 0.0,
"final_dropout": 0.1,
"gradient_checkpointing": true,
"hidden_act": "gelu",
"hidden_dropout": 0.047,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"layerdrop": 0.041,
"mask_feature_length": 10,
"mask_feature_min_masks": 0,
"mask_feature_prob": 0.0,
"mask_time_length": 10,
"mask_time_min_masks": 2,
"mask_time_prob": 0.4,
"model_type": "wav2vec2",
"num_adapter_layers": 3,
"num_attention_heads": 12,
"num_codevector_groups": 2,
"num_codevectors_per_group": 320,
"num_conv_pos_embedding_groups": 16,
"num_conv_pos_embeddings": 128,
"num_feat_extract_layers": 7,
"num_hidden_layers": 12,
"num_negatives": 100,
"output_hidden_size": 768,
"pad_token_id": 39,
"proj_codevector_dim": 256,
"tdnn_dilation": [
1,
2,
3,
1,
1
],
"tdnn_dim": [
512,
512,
512,
512,
1500
],
"tdnn_kernel": [
5,
3,
3,
1,
1
],
"transformers_version": "4.17.0.dev0",
"use_weighted_layer_sum": false,
"vocab_size": 40,
"xvector_output_dim": 512
}
loading feature extractor configuration file https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv/resolve/main/preprocessor_config.json from cache at /home/cahya/.cache/huggingface/transformers/34433162acde7e1ca4a265d8ae309442e4ddadff37e6e37d2d37eb7133f65f8f.fcd266b775b7f33ba9b607a0fee7cc615aeb2eb281586f046280492ea380ae23
Feature extractor Wav2Vec2FeatureExtractor {
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0.0,
"return_attention_mask": true,
"sampling_rate": 16000
}
loading weights file https://huggingface.co/cahya/wav2vec2-base-turkish-artificial-cv/resolve/main/pytorch_model.bin from cache at /home/cahya/.cache/huggingface/transformers/3b3f7d0041c2b08b031c8357e39249bdbc06c8bfcd5a9f8891c7f259b07a0b85.356b4eec0d55a5c4d2d480c2dd2ea2cc0c867771bc39b8cdc97b629e4206482c
Traceback (most recent call last):
File "run_speech_recognition_ctc.py", line 745, in <module>
main()
File "run_speech_recognition_ctc.py", line 552, in main
model = AutoModelForCTC.from_pretrained(
File "/home/cahya/Work/MachineLearning/transformers/src/transformers/models/auto/auto_factory.py", line 447, in from_pretrained
return model_class.from_pretrained(pretrained_model_name_or_path, *model_args, config=config, **kwargs)
File "/home/cahya/Work/MachineLearning/transformers/src/transformers/modeling_utils.py", line 1528, in from_pretrained
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_state_dict_into_model(
File "/home/cahya/Work/MachineLearning/transformers/src/transformers/modeling_utils.py", line 1682, in _load_state_dict_into_model
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
RuntimeError: Error(s) in loading state_dict for Wav2Vec2ForCTC:
size mismatch for lm_head.weight: copying a param with shape torch.Size([40, 768]) from checkpoint, the shape in current model is torch.Size([41, 768]).
size mismatch for lm_head.bias: copying a param with shape torch.Size([40]) from checkpoint, the shape in current model is torch.Size([41]).
|