updated the readme with corret resampler und new wer
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
-
value:
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-Indonesian
|
@@ -47,12 +47,12 @@ test_dataset = load_dataset("common_voice", "id", split="test[:2%]")
|
|
47 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
|
48 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
|
49 |
|
50 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
51 |
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the aduio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
56 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
57 |
return batch
|
58 |
|
@@ -89,13 +89,13 @@ model.to("cuda")
|
|
89 |
|
90 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'
|
91 |
|
92 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
98 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
|
|
99 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
return batch
|
101 |
|
@@ -118,7 +118,7 @@ result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
118 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
119 |
```
|
120 |
|
121 |
-
**Test Result**:
|
122 |
|
123 |
## Training
|
124 |
|
|
|
23 |
metrics:
|
24 |
- name: Test WER
|
25 |
type: wer
|
26 |
+
value: 19.37
|
27 |
---
|
28 |
|
29 |
# Wav2Vec2-Large-XLSR-Indonesian
|
|
|
47 |
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
|
48 |
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-indonesian")
|
49 |
|
|
|
50 |
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
|
56 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
57 |
return batch
|
58 |
|
|
|
89 |
|
90 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”\�]'
|
91 |
|
|
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
97 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
98 |
+
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
|
99 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
return batch
|
101 |
|
|
|
118 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
119 |
```
|
120 |
|
121 |
+
**Test Result**: 19.37 %
|
122 |
|
123 |
## Training
|
124 |
|