End of training
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: ai4bharat/indic-bert
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: indic-bert-roman-urdu-fine-grained
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# indic-bert-roman-urdu-fine-grained
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.8501
|
25 |
+
- Accuracy: 0.7678
|
26 |
+
- Precision: 0.6945
|
27 |
+
- Recall: 0.6537
|
28 |
+
- F1: 0.6720
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 5e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 128
|
50 |
+
- seed: 42
|
51 |
+
- gradient_accumulation_steps: 2
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- num_epochs: 10
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
61 |
+
| 1.1237 | 1.0 | 113 | 1.0947 | 0.5342 | 0.1068 | 0.2 | 0.1393 |
|
62 |
+
| 0.9606 | 2.0 | 226 | 0.8776 | 0.6689 | 0.4456 | 0.3188 | 0.2779 |
|
63 |
+
| 0.7784 | 3.0 | 339 | 0.6443 | 0.7896 | 0.7017 | 0.6830 | 0.6899 |
|
64 |
+
| 0.5626 | 4.0 | 452 | 0.5167 | 0.8302 | 0.7561 | 0.7371 | 0.7422 |
|
65 |
+
| 0.5613 | 5.0 | 565 | 0.4285 | 0.8634 | 0.7931 | 0.7849 | 0.7850 |
|
66 |
+
| 0.4232 | 6.0 | 678 | 0.3543 | 0.8867 | 0.8295 | 0.8072 | 0.8155 |
|
67 |
+
| 0.3376 | 7.0 | 791 | 0.2546 | 0.9293 | 0.8850 | 0.8757 | 0.8802 |
|
68 |
+
| 0.2759 | 8.0 | 904 | 0.2079 | 0.9469 | 0.9085 | 0.9132 | 0.9103 |
|
69 |
+
| 0.2029 | 9.0 | 1017 | 0.1564 | 0.9606 | 0.9370 | 0.9276 | 0.9322 |
|
70 |
+
| 0.137 | 10.0 | 1130 | 0.1364 | 0.9685 | 0.9558 | 0.9399 | 0.9477 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.45.1
|
76 |
+
- Pytorch 2.4.0
|
77 |
+
- Datasets 3.0.1
|
78 |
+
- Tokenizers 0.20.0
|