callmesan commited on
Commit
15b46d7
·
verified ·
1 Parent(s): 8f864b7

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-4.0
4
+ base_model: l3cube-pune/indic-sentence-bert-nli
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: indic-sentence-bert-nli-roman-urdu-fine-grained
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # indic-sentence-bert-nli-roman-urdu-fine-grained
21
+
22
+ This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.7424
25
+ - Accuracy: 0.7858
26
+ - Precision: 0.7111
27
+ - Recall: 0.6798
28
+ - F1: 0.6906
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 64
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.1702 | 1.0 | 113 | 1.1398 | 0.5901 | 0.3936 | 0.3331 | 0.2566 |
62
+ | 0.9227 | 2.0 | 226 | 0.8477 | 0.7001 | 0.2670 | 0.3508 | 0.2990 |
63
+ | 0.8216 | 3.0 | 339 | 0.7744 | 0.7309 | 0.3829 | 0.4267 | 0.3918 |
64
+ | 0.6698 | 4.0 | 452 | 0.6684 | 0.7713 | 0.5727 | 0.5493 | 0.5269 |
65
+ | 0.6337 | 5.0 | 565 | 0.5499 | 0.8340 | 0.6059 | 0.6291 | 0.6115 |
66
+ | 0.5396 | 6.0 | 678 | 0.4947 | 0.8428 | 0.6067 | 0.6571 | 0.6247 |
67
+ | 0.469 | 7.0 | 791 | 0.4368 | 0.8756 | 0.7950 | 0.7254 | 0.7261 |
68
+ | 0.4571 | 8.0 | 904 | 0.3816 | 0.9105 | 0.8661 | 0.8083 | 0.8305 |
69
+ | 0.4099 | 9.0 | 1017 | 0.3544 | 0.9237 | 0.8699 | 0.8494 | 0.8558 |
70
+ | 0.3605 | 10.0 | 1130 | 0.3385 | 0.9256 | 0.8819 | 0.8436 | 0.8576 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.45.1
76
+ - Pytorch 2.4.0
77
+ - Datasets 3.0.1
78
+ - Tokenizers 0.20.0