--- library_name: transformers license: cc-by-4.0 base_model: l3cube-pune/indic-sentence-bert-nli tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-sentence-bert-nli-roman-urdu-fine-grained results: [] --- # indic-sentence-bert-nli-roman-urdu-fine-grained This model is a fine-tuned version of [l3cube-pune/indic-sentence-bert-nli](https://huggingface.co/l3cube-pune/indic-sentence-bert-nli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7424 - Accuracy: 0.7858 - Precision: 0.7111 - Recall: 0.6798 - F1: 0.6906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1702 | 1.0 | 113 | 1.1398 | 0.5901 | 0.3936 | 0.3331 | 0.2566 | | 0.9227 | 2.0 | 226 | 0.8477 | 0.7001 | 0.2670 | 0.3508 | 0.2990 | | 0.8216 | 3.0 | 339 | 0.7744 | 0.7309 | 0.3829 | 0.4267 | 0.3918 | | 0.6698 | 4.0 | 452 | 0.6684 | 0.7713 | 0.5727 | 0.5493 | 0.5269 | | 0.6337 | 5.0 | 565 | 0.5499 | 0.8340 | 0.6059 | 0.6291 | 0.6115 | | 0.5396 | 6.0 | 678 | 0.4947 | 0.8428 | 0.6067 | 0.6571 | 0.6247 | | 0.469 | 7.0 | 791 | 0.4368 | 0.8756 | 0.7950 | 0.7254 | 0.7261 | | 0.4571 | 8.0 | 904 | 0.3816 | 0.9105 | 0.8661 | 0.8083 | 0.8305 | | 0.4099 | 9.0 | 1017 | 0.3544 | 0.9237 | 0.8699 | 0.8494 | 0.8558 | | 0.3605 | 10.0 | 1130 | 0.3385 | 0.9256 | 0.8819 | 0.8436 | 0.8576 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0