--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-hinglish-binary results: [] --- # twitter-roberta-large-hate-latest-hinglish-binary This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6112 - Accuracy: 0.6878 - Precision: 0.6586 - Recall: 0.6291 - F1: 0.6330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6312 | 0.9709 | 25 | 0.5962 | 0.6921 | 0.7303 | 0.5882 | 0.5657 | | 0.5494 | 1.9806 | 51 | 0.6137 | 0.7084 | 0.7402 | 0.6140 | 0.6047 | | 0.5448 | 2.9903 | 77 | 0.5723 | 0.7221 | 0.7021 | 0.6701 | 0.6771 | | 0.5016 | 4.0 | 103 | 0.5903 | 0.7030 | 0.6783 | 0.6470 | 0.6524 | | 0.4918 | 4.8544 | 125 | 0.5932 | 0.7084 | 0.6832 | 0.6610 | 0.6666 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0