camenduru commited on
Commit
44ca469
·
verified ·
1 Parent(s): fcfc8e4

thanks to jadechoghari ❤

Browse files
.gitattributes CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ figures/architecture.jpg filter=lfs diff=lfs merge=lfs -text
37
+ figures/gif_output/blur_back_n_forth.gif filter=lfs diff=lfs merge=lfs -text
38
+ figures/gif_output/haze_back_n_forth.gif filter=lfs diff=lfs merge=lfs -text
39
+ figures/gif_output/lowlight_back_n_forth.gif filter=lfs diff=lfs merge=lfs -text
40
+ figures/gif_output/rain_back_n_forth.gif filter=lfs diff=lfs merge=lfs -text
41
+ figures/gif_output/rain.gif filter=lfs diff=lfs merge=lfs -text
42
+ figures/qualitative_result.PNG filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ ---
5
+
6
+ # RobustSAM: Segment Anything Robustly on Degraded Images (CVPR 2024 Highlight)
7
+ # Model Card for ViT Huge (ViT-H) version
8
+
9
+ <a href="https://colab.research.google.com/drive/1mrOjUNFrfZ2vuTnWrfl9ebAQov3a9S6E?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
10
+ [![Huggingfaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/robustsam/robustsam/tree/main)
11
+
12
+ Official repository for RobustSAM: Segment Anything Robustly on Degraded Images
13
+
14
+ [Project Page](https://robustsam.github.io/) | [Paper](https://arxiv.org/abs/2406.09627) | [Video](https://www.youtube.com/watch?v=Awukqkbs6zM) | [Dataset](https://huggingface.co/robustsam/robustsam/tree/main/dataset)
15
+
16
+
17
+ ## Introduction
18
+ Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization.
19
+
20
+ Our method leverages the pre-trained SAM model with only marginal parameter increments and computational requirements. The additional parameters of RobustSAM can be optimized within 30 hours on eight GPUs, demonstrating its feasibility and practicality for typical research laboratories. We also introduce the Robust-Seg dataset, a collection of 688K image-mask pairs with different degradations designed to train and evaluate our model optimally. Extensive experiments across various segmentation tasks and datasets confirm RobustSAM's superior performance, especially under zero-shot conditions, underscoring its potential for extensive real-world application. Additionally, our method has been shown to effectively improve the performance of SAM-based downstream tasks such as single image dehazing and deblurring.
21
+
22
+
23
+ **Disclaimer**: Content from **this** model card has been written by the Hugging Face team, and parts of it were copy pasted from the original [SAM model card](https://github.com/facebookresearch/segment-anything).
24
+
25
+ # Model Details
26
+
27
+ The RobustSAM model is made up of 3 modules:
28
+ - The `VisionEncoder`: a VIT based image encoder. It computes the image embeddings using attention on patches of the image. Relative Positional Embedding is used.
29
+ - The `PromptEncoder`: generates embeddings for points and bounding boxes
30
+ - The `MaskDecoder`: a two-ways transformer which performs cross attention between the image embedding and the point embeddings (->) and between the point embeddings and the image embeddings. The outputs are fed
31
+ - The `Neck`: predicts the output masks based on the contextualized masks produced by the `MaskDecoder`.
32
+ # Usage
33
+
34
+
35
+ ## Prompted-Mask-Generation
36
+
37
+ ```python
38
+ from PIL import Image
39
+ import requests
40
+ from transformers import AutoProcessor, AutoModelForMaskGeneration
41
+
42
+ # load the RobustSAM model and processor
43
+ processor = AutoProcessor.from_pretrained("jadechoghari/robustsam-vit-huge")
44
+ model = AutoModelForMaskGeneration.from_pretrained("jadechoghari/robustsam-vit-huge")
45
+
46
+ # load an image from a url
47
+ img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
48
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
49
+
50
+ # we define input points (2D localization of an object in the image)
51
+ input_points = [[[450, 600]]] # example point
52
+
53
+ ```
54
+
55
+
56
+ ```python
57
+ # process the image and input points
58
+ inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to("cuda")
59
+
60
+ # generate masks using the model
61
+ with torch.no_grad():
62
+ outputs = model(**inputs)
63
+ masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
64
+ scores = outputs.iou_scores
65
+
66
+ ```
67
+ Among other arguments to generate masks, you can pass 2D locations on the approximate position of your object of interest, a bounding box wrapping the object of interest (the format should be x, y coordinate of the top right and bottom left point of the bounding box), a segmentation mask. At this time of writing, passing a text as input is not supported by the official model according to [the official repository](https://github.com/facebookresearch/segment-anything/issues/4#issuecomment-1497626844).
68
+ For more details, refer to this notebook, which shows a walk throught of how to use the model, with a visual example!
69
+
70
+ ## Automatic-Mask-Generation
71
+
72
+ The model can be used for generating segmentation masks in a "zero-shot" fashion, given an input image. The model is automatically prompt with a grid of `1024` points
73
+ which are all fed to the model.
74
+
75
+ The pipeline is made for automatic mask generation. The following snippet demonstrates how easy you can run it (on any device! Simply feed the appropriate `points_per_batch` argument)
76
+ ```python
77
+ from transformers import pipeline
78
+
79
+ # initialize the pipeline for mask generation
80
+ generator = pipeline("mask-generation", model="jadechoghari/robustsam-vit-huge", device=0, points_per_batch=256)
81
+
82
+ image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
83
+ outputs = generator(image_url, points_per_batch=256)
84
+ ```
85
+ Now to display the generated mask on the image:
86
+ ```python
87
+ import matplotlib.pyplot as plt
88
+ from PIL import Image
89
+ import numpy as np
90
+
91
+ # simple function to display the mask
92
+ def show_mask(mask, ax, random_color=False):
93
+ if random_color:
94
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
95
+ else:
96
+ color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
97
+
98
+ # get the height and width from the mask
99
+ h, w = mask.shape[-2:]
100
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
101
+ ax.imshow(mask_image)
102
+
103
+ # display the original image
104
+ plt.imshow(np.array(raw_image))
105
+ ax = plt.gca()
106
+
107
+ # loop through the masks and display each one
108
+ for mask in outputs["masks"]:
109
+ show_mask(mask, ax=ax, random_color=True)
110
+
111
+ plt.axis("off")
112
+
113
+ # show the image with the masks
114
+ plt.show()
115
+ ```
116
+
117
+ ## Visual Comparison
118
+ <table>
119
+ <tr>
120
+ <td>
121
+ <img src="figures/gif_output/blur_back_n_forth.gif" width="380">
122
+ </td>
123
+ <td>
124
+ <img src="figures/gif_output/haze_back_n_forth.gif" width="380">
125
+ </td>
126
+ </tr>
127
+ <tr>
128
+ <td>
129
+ <img src="figures/gif_output/lowlight_back_n_forth.gif" width="380">
130
+ </td>
131
+ <td>
132
+ <img src="figures/gif_output/rain_back_n_forth.gif" width="380">
133
+ </td>
134
+ </tr>
135
+ </table>
136
+
137
+ <img width="1096" alt="image" src='figures/qualitative_result.PNG'>
138
+
139
+ ## Reference
140
+ If you find this work useful, please consider citing us!
141
+ ```python
142
+ @inproceedings{chen2024robustsam,
143
+ title={RobustSAM: Segment Anything Robustly on Degraded Images},
144
+ author={Chen, Wei-Ting and Vong, Yu-Jiet and Kuo, Sy-Yen and Ma, Sizhou and Wang, Jian},
145
+ journal={CVPR},
146
+ year={2024}
147
+ }
148
+ ```
149
+
150
+
151
+ ## Acknowledgements
152
+ We thank the authors of [SAM](https://github.com/facebookresearch/segment-anything) from which our repo is based off of.
config.json ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "SamModel"
5
+ ],
6
+ "initializer_range": 0.02,
7
+ "mask_decoder_config": {
8
+ "_name_or_path": "",
9
+ "add_cross_attention": false,
10
+ "architectures": null,
11
+ "attention_downsample_rate": 2,
12
+ "bad_words_ids": null,
13
+ "begin_suppress_tokens": null,
14
+ "bos_token_id": null,
15
+ "chunk_size_feed_forward": 0,
16
+ "cross_attention_hidden_size": null,
17
+ "decoder_start_token_id": null,
18
+ "diversity_penalty": 0.0,
19
+ "do_sample": false,
20
+ "early_stopping": false,
21
+ "encoder_no_repeat_ngram_size": 0,
22
+ "eos_token_id": null,
23
+ "exponential_decay_length_penalty": null,
24
+ "finetuning_task": null,
25
+ "forced_bos_token_id": null,
26
+ "forced_eos_token_id": null,
27
+ "hidden_act": "relu",
28
+ "hidden_size": 256,
29
+ "id2label": {
30
+ "0": "LABEL_0",
31
+ "1": "LABEL_1"
32
+ },
33
+ "iou_head_depth": 3,
34
+ "iou_head_hidden_dim": 256,
35
+ "is_decoder": false,
36
+ "is_encoder_decoder": false,
37
+ "label2id": {
38
+ "LABEL_0": 0,
39
+ "LABEL_1": 1
40
+ },
41
+ "layer_norm_eps": 1e-06,
42
+ "length_penalty": 1.0,
43
+ "max_length": 20,
44
+ "min_length": 0,
45
+ "mlp_dim": 2048,
46
+ "model_type": "",
47
+ "no_repeat_ngram_size": 0,
48
+ "num_attention_heads": 8,
49
+ "num_beam_groups": 1,
50
+ "num_beams": 1,
51
+ "num_hidden_layers": 2,
52
+ "num_multimask_outputs": 3,
53
+ "num_return_sequences": 1,
54
+ "output_attentions": false,
55
+ "output_hidden_states": false,
56
+ "output_scores": false,
57
+ "pad_token_id": null,
58
+ "prefix": null,
59
+ "problem_type": null,
60
+ "pruned_heads": {},
61
+ "remove_invalid_values": false,
62
+ "repetition_penalty": 1.0,
63
+ "return_dict": true,
64
+ "return_dict_in_generate": false,
65
+ "sep_token_id": null,
66
+ "suppress_tokens": null,
67
+ "task_specific_params": null,
68
+ "temperature": 1.0,
69
+ "tf_legacy_loss": false,
70
+ "tie_encoder_decoder": false,
71
+ "tie_word_embeddings": true,
72
+ "tokenizer_class": null,
73
+ "top_k": 50,
74
+ "top_p": 1.0,
75
+ "torch_dtype": null,
76
+ "torchscript": false,
77
+ "transformers_version": "4.29.0.dev0",
78
+ "typical_p": 1.0,
79
+ "use_bfloat16": false
80
+ },
81
+ "model_type": "sam",
82
+ "prompt_encoder_config": {
83
+ "_name_or_path": "",
84
+ "add_cross_attention": false,
85
+ "architectures": null,
86
+ "bad_words_ids": null,
87
+ "begin_suppress_tokens": null,
88
+ "bos_token_id": null,
89
+ "chunk_size_feed_forward": 0,
90
+ "cross_attention_hidden_size": null,
91
+ "decoder_start_token_id": null,
92
+ "diversity_penalty": 0.0,
93
+ "do_sample": false,
94
+ "early_stopping": false,
95
+ "encoder_no_repeat_ngram_size": 0,
96
+ "eos_token_id": null,
97
+ "exponential_decay_length_penalty": null,
98
+ "finetuning_task": null,
99
+ "forced_bos_token_id": null,
100
+ "forced_eos_token_id": null,
101
+ "hidden_act": "gelu",
102
+ "hidden_size": 256,
103
+ "id2label": {
104
+ "0": "LABEL_0",
105
+ "1": "LABEL_1"
106
+ },
107
+ "image_embedding_size": 64,
108
+ "image_size": 1024,
109
+ "is_decoder": false,
110
+ "is_encoder_decoder": false,
111
+ "label2id": {
112
+ "LABEL_0": 0,
113
+ "LABEL_1": 1
114
+ },
115
+ "layer_norm_eps": 1e-06,
116
+ "length_penalty": 1.0,
117
+ "mask_input_channels": 16,
118
+ "max_length": 20,
119
+ "min_length": 0,
120
+ "model_type": "",
121
+ "no_repeat_ngram_size": 0,
122
+ "num_beam_groups": 1,
123
+ "num_beams": 1,
124
+ "num_point_embeddings": 4,
125
+ "num_return_sequences": 1,
126
+ "output_attentions": false,
127
+ "output_hidden_states": false,
128
+ "output_scores": false,
129
+ "pad_token_id": null,
130
+ "patch_size": 16,
131
+ "prefix": null,
132
+ "problem_type": null,
133
+ "pruned_heads": {},
134
+ "remove_invalid_values": false,
135
+ "repetition_penalty": 1.0,
136
+ "return_dict": true,
137
+ "return_dict_in_generate": false,
138
+ "sep_token_id": null,
139
+ "suppress_tokens": null,
140
+ "task_specific_params": null,
141
+ "temperature": 1.0,
142
+ "tf_legacy_loss": false,
143
+ "tie_encoder_decoder": false,
144
+ "tie_word_embeddings": true,
145
+ "tokenizer_class": null,
146
+ "top_k": 50,
147
+ "top_p": 1.0,
148
+ "torch_dtype": null,
149
+ "torchscript": false,
150
+ "transformers_version": "4.29.0.dev0",
151
+ "typical_p": 1.0,
152
+ "use_bfloat16": false
153
+ },
154
+ "torch_dtype": "float32",
155
+ "transformers_version": null,
156
+ "vision_config": {
157
+ "_name_or_path": "",
158
+ "add_cross_attention": false,
159
+ "architectures": null,
160
+ "attention_dropout": 0.0,
161
+ "bad_words_ids": null,
162
+ "begin_suppress_tokens": null,
163
+ "bos_token_id": null,
164
+ "chunk_size_feed_forward": 0,
165
+ "cross_attention_hidden_size": null,
166
+ "decoder_start_token_id": null,
167
+ "diversity_penalty": 0.0,
168
+ "do_sample": false,
169
+ "dropout": 0.0,
170
+ "early_stopping": false,
171
+ "encoder_no_repeat_ngram_size": 0,
172
+ "eos_token_id": null,
173
+ "exponential_decay_length_penalty": null,
174
+ "finetuning_task": null,
175
+ "forced_bos_token_id": null,
176
+ "forced_eos_token_id": null,
177
+ "global_attn_indexes": [
178
+ 7,
179
+ 15,
180
+ 23,
181
+ 31
182
+ ],
183
+ "hidden_act": "gelu",
184
+ "hidden_size": 1280,
185
+ "id2label": {
186
+ "0": "LABEL_0",
187
+ "1": "LABEL_1"
188
+ },
189
+ "image_size": 1024,
190
+ "initializer_factor": 1.0,
191
+ "initializer_range": 1e-10,
192
+ "intermediate_size": 6144,
193
+ "is_decoder": false,
194
+ "is_encoder_decoder": false,
195
+ "label2id": {
196
+ "LABEL_0": 0,
197
+ "LABEL_1": 1
198
+ },
199
+ "layer_norm_eps": 1e-06,
200
+ "length_penalty": 1.0,
201
+ "max_length": 20,
202
+ "min_length": 0,
203
+ "mlp_dim": 5120,
204
+ "mlp_ratio": 4.0,
205
+ "model_type": "",
206
+ "no_repeat_ngram_size": 0,
207
+ "num_attention_heads": 16,
208
+ "num_beam_groups": 1,
209
+ "num_beams": 1,
210
+ "num_channels": 3,
211
+ "num_hidden_layers": 32,
212
+ "num_pos_feats": 128,
213
+ "num_return_sequences": 1,
214
+ "output_attentions": false,
215
+ "output_channels": 256,
216
+ "output_hidden_states": false,
217
+ "output_scores": false,
218
+ "pad_token_id": null,
219
+ "patch_size": 16,
220
+ "prefix": null,
221
+ "problem_type": null,
222
+ "projection_dim": 512,
223
+ "pruned_heads": {},
224
+ "qkv_bias": true,
225
+ "remove_invalid_values": false,
226
+ "repetition_penalty": 1.0,
227
+ "return_dict": true,
228
+ "return_dict_in_generate": false,
229
+ "sep_token_id": null,
230
+ "suppress_tokens": null,
231
+ "task_specific_params": null,
232
+ "temperature": 1.0,
233
+ "tf_legacy_loss": false,
234
+ "tie_encoder_decoder": false,
235
+ "tie_word_embeddings": true,
236
+ "tokenizer_class": null,
237
+ "top_k": 50,
238
+ "top_p": 1.0,
239
+ "torch_dtype": null,
240
+ "torchscript": false,
241
+ "transformers_version": "4.29.0.dev0",
242
+ "typical_p": 1.0,
243
+ "use_abs_pos": true,
244
+ "use_bfloat16": false,
245
+ "use_rel_pos": true,
246
+ "window_size": 14
247
+ }
248
+ }
figures/Computational requirements.PNG ADDED
figures/architecture.jpg ADDED

Git LFS Details

  • SHA256: 4ea4cd17052ee5b74e99d5c709115163a1025734671a12302444721cc960f527
  • Pointer size: 132 Bytes
  • Size of remote file: 2.54 MB
figures/architecture.pdf ADDED
Binary file (515 kB). View file
 
figures/gif_output/blur.gif ADDED
figures/gif_output/blur.jpg ADDED
figures/gif_output/blur_back_n_forth.gif ADDED

Git LFS Details

  • SHA256: 11e91e6bcdcd20fc90f276947958464a5b421dd86990b256d19ab43910725d4e
  • Pointer size: 132 Bytes
  • Size of remote file: 1.59 MB
figures/gif_output/haze.gif ADDED
figures/gif_output/haze.jpg ADDED
figures/gif_output/haze_back_n_forth.gif ADDED

Git LFS Details

  • SHA256: e18eb59510bf9ba0b9c029a2738510e6ddb94762781101944bf0eb852cbd1350
  • Pointer size: 132 Bytes
  • Size of remote file: 1.32 MB
figures/gif_output/lowlight.gif ADDED
figures/gif_output/lowlight.jpg ADDED
figures/gif_output/lowlight_back_n_forth.gif ADDED

Git LFS Details

  • SHA256: 9bbaf17393fed7fe651a0ea48a407ec8c3b77e12c20eeaa28d3436be7662706f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.51 MB
figures/gif_output/rain.gif ADDED

Git LFS Details

  • SHA256: 8238dbdcafe9e9542303e363b2052c79552f35edfab5b4a15423ebb5838f8dda
  • Pointer size: 132 Bytes
  • Size of remote file: 1.33 MB
figures/gif_output/rain.jpg ADDED
figures/gif_output/rain_back_n_forth.gif ADDED

Git LFS Details

  • SHA256: 0669fa4ab685a93d94fc5d73ef6b8777adf1b1c9153fe51c91f4e59bb431a32f
  • Pointer size: 132 Bytes
  • Size of remote file: 2.02 MB
figures/qualitative_result.PNG ADDED

Git LFS Details

  • SHA256: d0e0872fdf7644df754369b9c9ac2d32996ea010cb3a4bc6bca7ea4a957775ad
  • Pointer size: 132 Bytes
  • Size of remote file: 2.44 MB
figures/seen_dataset_with_synthetic_degradation.PNG ADDED
figures/unseen_dataset_with_real_degradation.PNG ADDED
figures/unseen_dataset_with_synthetic_degradation.PNG ADDED
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cf54b58c6e6bb391b3b2032c0ccb4084f36ecac0b9fec362b4abc2f46862761
3
+ size 2564432184
preprocessor_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_pad": true,
5
+ "do_rescale": true,
6
+ "do_resize": true,
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_processor_type": "SamImageProcessor",
13
+ "image_std": [
14
+ 0.229,
15
+ 0.224,
16
+ 0.225
17
+ ],
18
+ "mask_pad_size": {
19
+ "height": 256,
20
+ "width": 256
21
+ },
22
+ "mask_size": {
23
+ "longest_edge": 256
24
+ },
25
+ "pad_size": {
26
+ "height": 1024,
27
+ "width": 1024
28
+ },
29
+ "processor_class": "SamProcessor",
30
+ "resample": 2,
31
+ "rescale_factor": 0.00392156862745098,
32
+ "size": {
33
+ "longest_edge": 1024
34
+ }
35
+ }
robustsam_checkpoint_h.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:515e3e7437732b54240fe8fc78562e0b4b633451aaee129cc1450323621cef19
3
+ size 3175817941